



## Effects of Gamma Radiation on Germination, Plant Height and Seed Viability of Okra (*Abelmoschus esculentus*)

Reem S. E. Omara<sup>1</sup>, Mayada Mamoun Beshir<sup>2</sup>, Ibrahim H. Babikir<sup>3</sup>, Amel M. Moursal<sup>4</sup>, Nahid Tagelsir<sup>5</sup>, Sadig K. Omara<sup>6</sup> and Abdelbagi M. A. Ghanim<sup>6</sup>

1Horticultural Crops Research Center, Agricultural Research Corporation, Shambat, Sudan.

2Biotechnology and Biosafety Research Center, Agricultural Research Corporation, Shambat, Sudan.

3Plant Pathology Laboratory, Integrated Pest Management Center, Agricultural Research Corporation, Shambat, Sudan.

4Pasture and Forage Program, Agricultural Research Corporation, Shambat, Sudan.

5Hudeiba Research Station, Agricultural Research Corporation, Sudan.

6Plant breeder and geneticist, Khartoum, Sudan.

Corresponding author: [reemonda79@yahoo.com](mailto:reemonda79@yahoo.com)

Received : 1. Jul. 2025

Accepted : 25. Oct. 2025

Published : 23. Nov. 2025

### Abstract

This experiment was conducted to evaluate the effects of different doses of gamma radiation on germination at 15 days after sowing, plant height at 15 and 30 days after sowing, and seed viability in okra. Seeds were exposed to 0 (control), 200, 300, 400, and 500 Gy of gamma rays. Significant differences ( $P \leq 0.01$ ) were observed in plant height at 15 days after sowing, and highly significant differences ( $P \leq 0.001$ ) in germination and plant height at 30 days after sowing. However, high gamma doses of 400 and 500Gy markedly decreased the number of viable seeds while increasing unviable seeds. Low doses (200 and 300Gy) had no significant effects on seed viability compared to the control. A strong linear relationship was found between radiation dose and seed viability ( $R^2 = 0.94$ ) and between dose and seed unviability ( $R^2 = 0.95$ ). Increasing radiation doses significantly ( $P \leq 0.05$ ) reduced and delayed seed viability, resulting in a 27% decline (from 100% in the control to 73% at 500 Gy). The results indicate that low doses of gamma radiation are non-detrimental to seed viability, while higher doses substantially impair germination and early growth in okra. Overall, these findings suggest that high gamma doses ( $\geq 500$ Gy) are detrimental to germination and growth, while moderate doses (200-400Gy) maintain viability and can even enhance growth through hormetic effects. Such information is valuable for optimizing gamma irradiation in mutation breeding programs aimed at generating variability without severely compromising seedling performance.

**Keywords:** Gamma radiation, hormetic effects, linear relationship, mutation breeding, okra, seed viability

## تأثير أشعة غاما على النباتات، طول النبات وحيوية البذور في نبات الباذنجان (*Abelmoschus esculentus*)

### المستخلص

أجريت هذه التجربة لتقييم أثر جرعات مختلفة من أشعة غاما على النباتات بعد 15 يوماً من الزراعة، إرتفاع النباتات بعد 15 و30 يوماً من الزراعة، وحيوية البذور. تعرضت البذور لجرعات صفريّة (المجموعة الضابطة) و 200 و 300 و 400 و 500 غرافي من أشعة غاما. لوحظت فروقاً معنوية ( $P \leq 0.01$ ) في ارتفاع النباتات بعد 15 يوماً من الزراعة، وفروقاً معنوية عالية ( $P \leq 0.001$ ) في الإناث وارتفاع النباتات بعد 30 يوماً من الزراعة. مع ذلك، أدت جرعات غاما العالية (400 و 500 غرافي) إلى انخفاض ملحوظ في عدد البذور القابلة للحياة، مع زيادة في عدد البذور غير القابلة للحياة. لم يكن للجرعات المنخفضة (200 و 300 غرافي) أي آثار معنوية على حوية البذور مقارنة بالمجموعة الضابطة. وجدت علاقة خطية قوية بين جرعة الإشعاع وحيوية البذور ( $R^2 = 0.94$ ) وبين الجرعة وعدم الحوية ( $R^2 = 0.95$ ). أدت زيادة جرعات الإشعاع بشكل ملحوظ ( $P \leq 0.05$ ) إلى انخفاض قابلية البذور للنمو وتأخيرها، مما أدى إلى انخفاض بنسبة 27٪ (من 100٪ في المجموعة الضابطة إلى 73٪ عند 500 غرافي). تشير النتائج إلى أن الجرعات المنخفضة من أشعة غاما لا تؤثر سلباً على قابلية البذور للنمو، بينما تُضعف الجرعات العالية بشكل كبير الإناث والنمو المبكر في الباذنجان. بشكل عام، تشير هذه النتائج إلى أن جرعات غاما العالية ( $\leq 500$  غرافي) تضر بالإناث والنمو، بينما تحافظ الجرعات المعتدلة (200 و 400 غرافي) على قابلية النمو، بل ويمكّنها تعزيز النمو خلال التأثيرات الهرمونية. تعد هذه المعلومات قيمة لتحسين إشعاع غاما في برامج تربية الطفرات الهادفة إلى توليد تباين دون المساس الشديد بأداء الشتلات.

**الكلمات المفتاحية:** إشعاع جاما، التأثيرات الهرمونية، العلاقة الخطية، تربية الطفرات، الباذنجان، حوية البذور

## Introduction

Okra [*Abelmoschus esculentus* (L.) Moench] belongs to the genus *Abelmoschus*, which belongs to the family Malvaceae that consists of twelve species (Kisher *et al.*, 2016). *A. esculentus*, commonly known as okra or lady's finger, is a warm-season crop cultivated throughout the tropical and warm temperate regions of the world (Surendran *et al.*, 2017). It has the highest chromosome number among vegetables (2n=130). It is a self-pollinated vegetable crop that is mainly propagated by seeds (Osawaru *et al.*, 2014).

Okra originated in tropical Africa and is native to northeastern Africa, mainly Ethiopia and Sudan (Oyelade *et al.*, 2003; Santos *et al.*, 2012). The optimum growth temperature range is between 24°-27°C, and it is highly tolerant to high temperatures and drought conditions (Surendran *et al.*, 2017). Okra fruit is primarily eaten raw or cooked, and it is a significant source of vitamins A, B, and C, as well as minerals like phosphorus, potassium, sulfur, calcium, iron, and iodine. However, it is also said to be low in salt, saturated fat, and cholesterol (Kendall and Jenkins, 2004).

Global okra production rose from 1,107,430 tonnes in 1961 to 11,523,290 tons in 2023, with an average annual growth rate of 4.01%. India leads as the world's top okra producer, producing 7.16 million tons annually with an average growth rate of 3.70%, accounting for 62.1% of global production. Nigeria ranks second with an annual production of 1.87 million tons, growing at 5.53% per year and contributing 16.3% to global production. Sudan ranks fourth in okra production, with output having increased from 263,000 tons in 2012 to 303,150 tons in 2023, reflecting an average annual growth rate of 2.31% (FAO, 2024).

In Sudan, okra is the most traditionally popular vegetable; it is grown in all areas of the country throughout the year, where both cultivated and wild types are known (Mohamed, 2023; Schippers, 2002). In addition to the introduced varieties such as Clemson Spineless and Pusa Swani, there are a number of local varieties, e.g., spiny types called Khartoumia, Karrari, Kassala, Medani, Sinnar, and others.

In certain cases, the desired trait does not exist in germplasm collections of a crop, and hence mutation breeding can be efficiently employed as an alternative valuable method to generate and develop new varieties with such desired characteristics (Reddy and Dhaduk, 2014). A mutation is a sudden, heritable change in the DNA of a living cell that is not caused by genetic segregation or recombination. (Van Harten, 1998). Mutation induction has been proven to be an effective method to increase genetic variability in crops (Surendran *et al.*, 2017). Inducing variation through mutation is common and has been found to be successful in okra (Ashadevi *et al.*, 2017).

A primary application of induced mutations is the improvement of polygenic traits in crop plants by introducing desirable mutants directly into commercial cultivars or using them indirectly through crossbreeding (Jadhav *et al.*, 2012). According to the International Atomic Energy Agency (IAEA) database (<http://mvgs.iaea.org>), there are more than 3,300 officially released mutant varieties of 170 different species in more than 60 countries around the world that not only increase biodiversity but also provide material for plant breeding (Jankowicz-Cieslak *et al.*, 2017). Mutation induction can be carried out using chemical or physical mutagens (Shahab *et al.*,

2018). Some of the agronomic traits generated as a result of mutation induction included increasing 3Deoxyanthocyanidin accumulation in leaves (Petti *et al.*, 2014), dwarfism, early flowering, high protein digestibility, and high lysine content, which have been widely used in sorghum breeding (Shu *et al.*, 2011).

Therefore, this study aimed to study the effects of gamma radiation on germination, plant height and seed viability of okra.

### **Study Site**

Experiment was conducted during the winter season of 2017-2018 at Shambat Research Station Farm (latitude 15°36'N and longitude 32°32'E and elevation 380m). Gamma rays radiation was carried out in the International Atomic Energy Agency (IAEA), Austria.

### **Materials and Methods**

#### **Experimental Design**

Experiment was conducted using a randomized complete block design (RCBD) with three replications. Local cultivar of okra seeds was used in this study. Land was prepared by deep ploughing and harrowing twice in opposite directions and then leveled; thereafter, 70 cm ridges were prepared. Seeds were sown at 30 cm intra-row spacing and 2 to 3 seeds per hole, then thinned to one plant per hole. The experiments were irrigated weekly and hand weeded whenever necessary. All the recommended cultural practices were followed to maintain good crop stand.

#### **Genetic Material and Irradiation of Seeds**

A widely cultivated local okra landrace from Kasala was used in this study. Seeds were exposed to gamma radiation doses of 0, 200, 300, 400, and 500 Gy, using a radiation source with a capacity of 3000 Ci and a delivery rate of 7200 r/min.

#### **Data Collection**

Data on morphological traits included germination at 15 days after sowing and plant height at 15 and 30 days after sowing. Twenty-five plants were randomly selected from each plot for assessment of plant height at 15 and 30 days after sowing.

For the assessment of seed viability, fruits from the M<sub>1</sub> generation (plants grown from irradiated seeds) were harvested, and seeds of the M<sub>2</sub> generation (progeny of M<sub>1</sub> plants) were extracted. A total of ninety fruits were then randomly selected for viability testing. The extracted seeds were cleaned, air-dried, and stored under ambient laboratory conditions until analysis. Percentage of the number of seeds was calculated as follow;

$$\text{Number of viable seeds (\%)} = (\text{Number of viable seeds} / \text{Total number of seeds}) \times 100$$

$$\text{Number of unviable seeds (\%)} = (\text{Number of unviable seeds} / \text{Total number of seeds}) \times 100$$

For determining seed germinability, the seeds of the M<sub>2</sub> generation (progeny of M<sub>1</sub> plants) were sown in moist soil under controlled conditions. The number of germinated seeds was recorded daily for 15 days, and the percentage of germination for each treatment was calculated using the formula:

$$\text{Germination (\%)} = (\text{Number of germinated seeds} / \text{Total number of seeds sown}) \times 100$$

Seedling survival was monitored and recorded from the 10th day onward after sowing.

### Data Analysis

All data were subjected to an analysis of variance, with mean comparisons performed using Fisher's protected least significant difference (LSD) test at  $P \leq 0.05$  (Steel and Torrie, 1980). Least square means for all genotypes were generated using analysis of variance (ANOVA) option of GenStat 18th Edition (VSN International Ltd., UK)

### Results

Analysis of variance (Table 1) showed significant differences ( $P \leq 0.01$ ) for plant height at 15 days and highly significant differences ( $P \leq 0.001$ ) for germination and plant height at 30 days.

Table 1: Analysis of variance (ANOVA) of germination and plant height of okra (*Abelmoschus esculentus*) genotypes exposed to five gamma radiation doses in winter season (2017-2018)

| Source of variation | Df | Germination | Plant height at 15 DAS (cm) | Plant height at 30 DAS (cm) |
|---------------------|----|-------------|-----------------------------|-----------------------------|
| Rep                 | 2  | 1620.6      | 8.132                       | 710.38                      |
| Dose (Gy)           | 4  | 9603.2***   | 8.274**                     | 84.082***                   |
| Residual            | 8  | 188         | 1.249                       | 2.56                        |
| Total               | 14 |             |                             |                             |

\*\*= significant difference at  $P \leq 0.01$ , \*\*\*= highly significant difference at  $P \leq 0.001$ .

DAS= days after sowing.

Mean performance of germination at 15 days after sowing and plant height at 15 and 30 days after sowing showed differences among irradiation doses. The 500Gy treatment showed the lowest mean number of germination seeds at 15 days after sowing (95.70) while the control had the highest (237.5), followed by 200Gy (197.5) and 300Gy (152.5), respectively. Regarding plant height at 15 and 30 days after sowing, the control had the highest plant height at 15 and 30 days after sowing (19.8 cm & 57.4 cm, respectively), followed by irradiation dose 400Gy (18.9 & 51.3, respectively), while irradiation dose 300Gy showed the lowest plant height at 15 and 30 days after sowing with 15.7cm and 43.2cm, respectively (Tale 2).

Table 2: Mean performance of germination at 15 days after sowing and plant height at 15 and 30 days after sowing of okra seeds planted in winter (2017-2018)

| Dose (Gy)             | Germination at 15 DAS | Plant height at 15 DAS (cm) | Plant height at 30 DAS (cm) |
|-----------------------|-----------------------|-----------------------------|-----------------------------|
| Control               | 237.5±7.9             | 19.8±0.7                    | 57.4±0.9                    |
| 200                   | 197.5±7.9             | 17.6±0.7                    | 48.2±0.9                    |
| 300                   | 152.0±7.9             | 15.7±0.7                    | 43.2±0.9                    |
| 400                   | 125.3±7.9             | 18.9±0.7                    | 51.3±0.9                    |
| 500                   | 95.70±7.9             | 16.7±0.7                    | 47.3±0.9                    |
| LSD ( $p \leq 0.05$ ) | 25.8                  | 2.10                        | 3.01                        |
| SED ( $p \leq 0.05$ ) | 11.2                  | 0.91                        | 1.31                        |
| CV%                   | 8.50                  | 6.30                        | 3.20                        |
| Grand mean            | 161.6                 | 17.7                        | 49.5                        |
| Minimum               | 91.0                  | 15.1                        | 36.8                        |
| Maximum               | 272                   | 22.8                        | 72.2                        |

DAS= days after sowing.

Differences between viable and unviable seeds are presented in Plate 1. In this study, most seeds were viable, although a few were unviable, especially at the higher irradiation doses (300, 400 and 500Gy). The viable seeds were round and brown to green color, whereas the unviable seeds were small, wrinkled, and dark green to black in color.

To determine seed germinability, seeds were sown in moist soil, and the number of germinated seeds was counted daily for 15 days. The germination percentage for each treatment was then calculated, and seedlings survival was recorded from the 10th day onward after sowing. Results showed that the percentage of viable seed germination was 100%, while unviable seeds did not germinate (0%).

Plate1. Differences between viable and unviable seeds resulting from 400Gy dose



Analysis of variance (Table 3) showed significant differences ( $P \leq 0.001$ ) among viable and unviable seeds. No significant differences in total seed number.

Table 3: Analysis of variance (ANOVA) of seed viability of okra (*Abelmoschus esculentus*) genotypes exposed to five gamma radiation doses in winter season (2017-2018)

| Source of variation   | Df  | Number of viable seeds | Number of unviable seeds | Total number of seeds |
|-----------------------|-----|------------------------|--------------------------|-----------------------|
| Rep                   | 2   | 810.2                  | 48.13                    | 470.2                 |
| Dose (Gy)             | 4   | 4457.2***              | 7272.11***               | 522.2ns               |
| Residual              | 443 | 145.8                  | 12.07                    | 152.9                 |
| Total                 | 449 |                        |                          |                       |
| LSD ( $P \leq 0.05$ ) |     | 3.5                    | 1.0                      | 3.60                  |

\*\*\*= highly significant difference at  $P \leq 0.001$ , ns=non-significant difference.

The percentage of viable and unviable seeds is presented in Table 4. The number of viable seeds was highest in the control (62.0) and decreased progressively with increasing radiation doses. Treatments at 200Gy (59.9) and 300Gy (57.9) showed a moderate reduction, while 400Gy (50.0) and 500Gy (45.3) resulted in a pronounced decrease. The 500Gy treatment produced a significantly lower number of viable seeds than all other treatments, as indicated by the mean separation letters (LSD,  $P \leq 0.05$ ). Conversely, the number of unviable seeds increased with increasing radiation dose, ranging from 0.0 in the control to 2.4, 11.6, 21.3, and 35.5 at 200Gy, 300Gy, 400Gy, and 500Gy, respectively. The total number of seeds per treatment varied slightly, ranging from 62.4 at 200Gy to 67.3 at 500Gy.

Table 4: Percentage of seed viability from okra exposed to various doses of gamma radiation

| Dose         | Viable seed number | Viable percentage | Unviable seed number | Unviable percentage | Total seed number |
|--------------|--------------------|-------------------|----------------------|---------------------|-------------------|
| 0            | 62.0 d             | 100               | 0.00 a               | 0.00                | 62.0              |
| 200          | 59.9 cd            | 96.6              | 1.50 b               | 2.40                | 61.4              |
| 300          | 57.9 c             | 93.3              | 7.20 c               | 11.6                | 65.1              |
| 400          | 50.0 b             | 80.6              | 13.2 d               | 21.3                | 63.2              |
| 500          | 45.3 a             | 73.0              | 22.0 e               | 35.5                | 67.3              |
| LSD (P≤0.05) | 3.50               |                   | 1.00                 |                     | 3.60              |
| SE±          | 1.30               |                   | 0.40                 |                     | 1.30              |
| SED (P≤0.05) | 1.80               |                   | 0.50                 |                     | 1.80              |
| CV%          | 22.0               |                   | 39.4                 |                     | 19.4              |
| Grand mean   | 55.0               |                   | 8.80                 |                     | 63.8              |
| Minimum      | 15.0               |                   | 0.00                 |                     | 24.0              |
| Maximum      | 95.0               |                   | 36.0                 |                     | 105.0             |

The percentage of viable and unviable seeds response to gamma radiation doses is presented in Figure 1. Linear regression analysis revealed a strong negative relationship between radiation dose and seed viability ( $R^2=0.94$ ) and a strong positive relationship between radiation dose and seed unviability ( $R^2=0.95$ ), indicating that 94% and 95% of the variation in these parameters, respectively, was explained by the applied radiation doses.

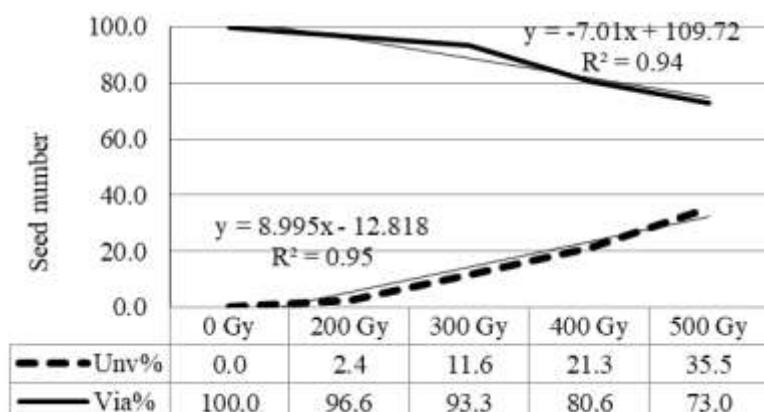



Figure 1: Percentage of viable and unviable seeds of okra in response to gamma radiation doses.

## Discussion

Gamma irradiation significantly affected germination, plant height, and seed viability in okra (*Abelmoschus esculentus* L.) in a dose-dependent manner.

Germinated seeds decreased progressively with increasing irradiation, from the highest in the control (237.5) to the lowest at 500Gy (95.7). This reduction is likely due to radiation-induced damage to embryonic cells or inhibition of key germination enzymes, as reported in okra (Dhankhar and Dhankhar, 2004) and other crops including chickpea (Toker *et al.*, 2005; Umavathi and Mullaianathan, 2016), lima bean (Kumar *et al.*, 2003), sweet potato (Tabares and Talavera, 2003), and cowpea (Seema *et al.*, 2003). Likewise, Asare *et al.*, (2017) observed that gamma irradiation above 400 Gy delayed and reduced germination and seedling growth compared with controls.

Reduced growth has been attributed to auxin destruction, changes in ascorbic acid content, and physiological and biochemical disturbances (Gunckel and Sparrow, 1954). However, the stimulating effect of lower doses of gamma irradiation on the growth of okra plants might be due to the stimulation of cell division and processes that affect the synthesis of nucleic acids (Pitirmovae, 1979).

Plant height at 15 and 30 days after sowing showed a non-linear trend. , A decline occurred when the irradiation dose was increased to 200Gy (17.6cm & 48.2cm) and 300Gy (15.7cm & 43.2cm) compared to the control (19.8cm & 57.4cm), while plant height at 15 and 30 days after sowing increased when the irradiation dose was increased to 400Gy (18.9cm & 51.3cm), and then decreased when the irradiation dose was increased to 500Gy (16.7cm & 47.3cm). The highest plant height at 15 and 30 days after sowing was observed for the control which was closely followed by 400Gy, while 300Gy recorded the lowest plant height at 15 and 30 days after sowing.

This non-linear pattern suggests a possible hormetic response, where moderate radiation doses stimulate growth while higher doses are inhibitory, a phenomenon widely reported in plants exposed to abiotic stressors including gamma radiation (Calabrese and Baldwin, 2003; Vaiserman *et al.*, 2021). Similar findings were reported by Hegazi and Hamideldin (2010), who observed maximum plant height at 400Gy compared with 300Gy and 500Gy gamma-ray treatments.

Likewise, high gamma irradiation doses have deleterious effects on plant height (Loch, 1977; IBPGR, 1991; Singh *et al.*, 2000 and Ochatt *et al.*, 2001). The reduction in plant height observed in the current study may be attributed to a reduction in mitotic activity of meristematic tissues (Khalil *et al.*, 1986). Iqbal, 1969 and Walther, 1969 reported that the reduction in plant height may be attributed to damage to the processes of cell division and cell elongation as a result of mutagenic treatment. This is because irradiation causes DNA breakage in plant cells, further leading to various types of damage to plant cell division and development processes, and plant growth (Amirkhah *et al.*, 2019; Li *et al.*, 2021).

Seed viability was significantly reduced at higher doses (400-500Gy), while unviable seeds increased. This decline can be attributed to several biological mechanisms. Ionizing radiation induces lethal mutations in the embryo's DNA, such as chromosomal breaks, deletions, and rearrangements that compromise embryo development (Baek *et al.*, 2005; Kovacs and Keresztes, 2002). It may also damage the endosperm—the primary nutrient source for germination—or disrupt cellular integrity, including membranes and organelles (Melki and Dahmani, 2009; Sangwan and Mehta, 2010). Moreover, gamma radiation triggers oxidative stress through the generation of reactive oxygen species (ROS), which further damage nucleic acids, proteins, and lipids (Kim *et al.*, 2004; Wi *et al.*, 2007; Zaka *et al.*, 2002). For practical purposes, viable okra seeds should be harvested once they reach the proper maturation stage, typically when seeds transition from green to brown, as seeds continue to enlarge on the plant until fully developed. High radiation doses accelerate loss of viability, emphasizing the importance of dose optimization for mutation breeding and seed preservation.

Linear regression analysis revealed a strong negative relationship between radiation dose and seed viability ( $R^2 = 0.94$ ) and a strong positive relationship between dose and seed unviability ( $R^2 = 0.95$ ). This indicates that 94 % and 95 % of the observed variation in these parameters, respectively, were explained by radiation dos. For instance, actual viability declined from 62.0 % to 45.3 %, representing a reduction of ~ 26.9 %.

These results are consistent with earlier studies showing that germination and viability decline proportionally with increasing gamma dose (Asare *et al.*, 2017; Melki and Dahmani, 2009; Toker *et al.*, 2005). The strong linear relationships observed confirm that radiation dose is a key determinant of seed viability, though the magnitude of reduction must be interpreted based on actual percentage changes rather than  $R^2$  values.

Overall, these findings suggest that high gamma doses ( $\geq 500$ Gy) are detrimental to germination and growth, while moderate doses (200–400Gy) maintain viability and can even enhance growth through hormetic effects. Such information is valuable for optimizing gamma irradiation in mutation breeding programs aimed at generating variability without severely compromising seedling performance.

### Conclusion

Low doses of gamma radiation showed no adverse effects on seed viability in okra, suggesting potential for safe use in mutation breeding. However, higher doses significantly reduced germination and plant growth. Further research is needed to clarify the physiological and molecular mechanisms behind radiation-induced changes and seed aging in okra.

### Acknowledgment

Authors are gratefully appreciated and acknowledged for the International Atomic Energy Agency (IAEA) and the Agricultural Research Corporation (ARC) for providing support to this study.

## References

Amirikhah, R.; Etemadi, N.; Sabzalian, M.R.; Nikbakht, A.; Eskandari, A. (2019). Physiological consequences of gamma ray irradiation in tall fescue with elimination potential of Epichloë fungal endophyte. *Ecotoxicology and Environmental Safety*, 182: 109412. doi: 10.1016/j.ecoenv.2019.109412.

Asare, A.T.; Mensah, F.; Acheampong, S.; Asare-Bediako, E.; Armah, J. (2017). Effects of gamma irradiation on agromorphological characteristics of okra (*Abelmoschus esculentus* L. Moench.). *Advances in Agriculture*, 2017(1): 2385106.

Ashadevi, R.; Koundinya, A.V.; Chattopadhyay, S.B. (2017). An estimation of effective mutagen doses, induced genetic variation and characters association in M2 generation of okra. *Int J Curr Microbiol App Sci*, 6(5): 2209-2219. DOI.org/10.20546/ijcmas.2017.605.247 An Estima.

Baek, M.H.; Chung, B.Y.; Kim, J.S.; Lee, I.S. (2005). Effects of gamma irradiation on growth, photosynthesis, and antioxidative capacity of red pepper (*Capsicum annuum* L.) plants. *Journal of Plant Biology*, 48(1), 47–56. <https://doi.org/10.1007/BF03030562>.

Calabrese, E.J.; Baldwin, L.A. (2003). Hormesis: the dose-response revolution. *Annual review of pharmacology and toxicology*, 43(1), 175-197.

Dhankhar, B.S.; Dhankhar, S.K. (2004). Induction of genetic male sterility in okra [*Abelmoschus esculentus* (L.) Moench]. *CROP RESEARCH-HISAR-*, 27(1): 111-112.

Mohamed, E.I. (2023). Phenotypic variations among okra [*Abelmoschus esculentus* (L.) Moench] genetic resources in Sudan. *Genetic Resources* (2023): 4 (7), 20–31 DOI: 10.46265/genresj.DLOX8174. <https://www.genresj.org> ISSN: 2708-3764.

FAO. (2024). Food and Agriculture Organization of the United Nations <http://faostat.fao.org>, Statistics Division (FAOSTAT).

Gunckel, J.E.; Sparrow, A.H. (1954). Aberrant growth in plants induced by ionizing radiation. In *Brookhaven Symp. Biol.*, (6): 252-279.

Hegazi, A.Z.; Hamideldin, N. (2010). The effect of gamma irradiation on enhancement of growth and seed yield of okra [*Abelmoschus esculentus* (L.) Monech] and associated molecular changes. *Journal of Horticulture and Forestry*, 2(3): 038-051.

IBPGR. (1991). “Report of an International Workshop on Okra Genetic Resources , International Crop network, series 5, IBPGR,” in Proceedings of the Report of an International Workshop on Okra Genetic Resources , *International Crop network*, series 5, IBPGR.

Iqbal, J. (1969). Radiation induced growth abnormalities in vegetative shoot apices of *Capsicum Annum* L. in relation to cellular damage. *Radiation Botany*. 1969;9: 491–499. doi: 10.1016/S0033-7560(69)80055-4.

Jadhav, P.A.; Kalpande, H.V.; Kathale, M.N.; Dahale, G.P. (2012). Effect of gamma rays and ethyl methane sulphonate on germination, pollen viability and survival of okra [*Abelmoschus esculentus* (L.) Moench]. *Journal of Crop and Weed*, 8(2): 130-131.

Jankowicz-Cieslak, J.; Tai, T.H.; Kumlehn, J.; Till, B.J. (2017). *Biotechnologies for Plant Mutation Breeding: Protocols* (p. 340). Springer Nature.

Kendall, C.W.; Jenkins, D.J. (2004). A dietary portfolio: Maximal reduction of low-density lipoprotein cholesterol with diet. *Current Atherosclerosis Reports*, 6(6): 492–498.

Khalil, S.K.; Rehman, S.; Afridi, K.; Jan, M.T. (1986). Damage induced by gamma radiation in morphological and chemical characteristics of barley. *Sarhad Journal of Agriculture*, 2: 45–54.

Kim, J.H.; Baek, M.H.; Chung, B.Y.; Wi, S.G.; Kim, J.S. (2004). Alterations in photosynthetic pigments and antioxidant machineries of red pepper (*Capsicum annuum* L.) seedlings from gamma-irradiated seeds. *Journal of Plant Biology*: 47(4), 314–321. <https://doi.org/10.1007/BF03030546>.

Kisher, D.S.; Arya, K.; Yogeesh, K.J.; Vinod, K.Y.; HeeJong, K. (2016). Genotypic variation among okra [*Abelmoschus esculentus* (L.) Moench], germplasms in South indian. *Plant Breeding and Biotechnology* 4(2):234-241.

Kovács, E.; Keresztes, Á. (2002). Effect of gamma and UV-B/C radiation on plant cells. *Micron*, 33(2): 199–210. [https://doi.org/10.1016/S0968-4328\(01\)00012-9](https://doi.org/10.1016/S0968-4328(01)00012-9).

Kumar, D.S.; Nepolean, T.; Gopalan, A. (2003). Effectiveness and efficiency of the mutagens gamma rays and ethyl methane sulfonate on Lima bean (*Phaseolus lunatus* L.). *Indian Journal of Agricultural Research*, 37(2): 115-119.

Li, Y.R.; Liu, L.; Wang, D.; Chen, L.; Chen, H. (2021). Biological effects of electron beam to target turning X-ray (EBTTX) on two freesia (*Freesia hybrida*) cultivars. *Peer J*, 9, e10742. doi: 10.7717/peerj.10742

Melki, M.; Dahmani, D. (2009). Gamma irradiation effects on durum wheat (*Triticum durum* Desf.) under various conditions. *Pakistan Journal of Biological Sciences*, 12(19): 1402–1407. <https://doi.org/10.3923/pjbs.2009.1402.1407>.

Ochatt, S.; Durieu, P.; Jacas, L.; Pontécaille, C. (2001). Protoplast, cell and tissue cultures for the biotechnological breeding of grass pea (*Lathyrus sativus* L.). *Lathyrus Lathyrism Newsletter*, 2(1), 35-38.

Osawaru, M.E.; Ogwu, M.C.; Omologbe, J. (2014). Characterization of three Okra [*Abelmoschus esculentus* (L.) Moench]. Moench accessions using morphology and SDS-PAGE for the basis of conservation. *Egypt. Acad. J. Biol. Sci*, 5: 55-65.

Oyelade, O.J.; Ade-Omowaye, B.I.O.; Adeomi, V.F. (2003). Influence of variety on protein, fat contents and some physical characteristics of okra seeds. *Journal of Food Engineering*, 57(2): 111-114. DOI.org/10.1016/S0260-8774(02)00279-0.

Petti, C.; Kushwaha, R.; Tateno, M.; Harman-Ware, A.E.; Crocker, M.; Awika, J.; DeBolt, S. (2014). Mutagenesis breeding for increased 3-deoxyanthocyanidin accumulation in leaves of Sorghum bicolor (L.) Moench: A source of natural food pigment. *Journal of agricultural and food chemistry*, 62(6): 1227-1232. DOI.org/10.1021/jf405324j.

Pitirmovae, M.A. (1979). Effect of gamma rays and mutagens on barley seeds. *Fiziol. Res*, 6: 127-131.

Reddy, P.S.; Dhaduk, L.K. (2014). Induction of genetic variability in okra [*Abelmoschus esculentus* (L.) Moench] by gamma and ems. *Electronic Journal of Plant Breeding*, 5(3): 588-593.

Sangwan, R.S.; Mehta, A. (2010). Effect of gamma irradiation on seed germination and seedling growth of okra (*Abelmoschus esculentus* L. Moench). Indian Journal of Agricultural Sciences, 80(3): 233–236.

Santos, B. M.; Dittmar, P. J.; Olson, S. M.; Webb S. E.; Zhang, S. (2012). Okra Production in Florida. University of Florida IFAS Extension, Gainesville, FL, USA: 163-171.

Schippers, R. R. (2002). African indigenous vegetables: an overview of the cultivated species 2002.

Seema, G.; Manju, S.; Neetu, R.; Bhati, P.S.; Kumar, D. (2003). Radiobiological responses of cowpea. Advances in arid legumes research: 75-78

Shahab, D.; Gulfishan, M.; Khan, A.A.; Vágvölgyi, C.; Khalil Ansari, M.Y. (2018). Comparative mutagenic effectiveness and efficiency of physical and chemical mutagens in [*Solanum melongena* L.] variety pusa uttam. Biomedical Journal of Scientific and Technical Research, 7(4): 6056-6060. [DOI.org/10.26717/BJSTR.2018.07.001541](https://doi.org/10.26717/BJSTR.2018.07.001541).

Shu, Q.Y.; Forster, B.P.; Nakagawa, H. (2011). Plant mutation breeding and biotechnology: plant breeding and genetics section. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture International Atomic Energy Agency, Vienna, Austria, Joint FAO/IAEA programme.

Singh, A.K.; Singh, K.P.; Singh, R. B. (2000). Seedling injury, reduced pollen and ovule fertility and chlorophyll mutations induced by gamma rays and EMS in okra [*Abelmoschus esculentus* (L.) Moench]. Vegetable Science, 27(1): 42–44.

Steel, R.G.D.; Torrie, J.H. (1980). Principles and Procedures of Statistics, a Biometrical Approach (No. Ed. 2). McGraw-Hill Kogakusha, Ltd. pp 666

Surendran, S.; Udayan, P.S. (2017). Gamma Rays Induced Mutations on Morphological and Yield Attributing Characters in M2 Generation of Okra [*Abelmoschus esculentus* (L.) Moench]. *Int. J. Curr. Microbiol. App. Sci.*, 6(10): 3623-3628. [DOI.org/10.20546/ijcmas.2017.610.427](https://doi.org/10.20546/ijcmas.2017.610.427).

Tabares, P.F.M.; Talavera, T.S. (2003). Influence of different morphological characters on the gamma radio sensitivity of sweet potato (*Ipomea batatas* L) Alinentria, 40: 101–104,

Toker, C.; Uzun, B.; Cancı, H.; Ceylan, F.O. (2005). Effects of gamma irradiation on the shoot length of Cicer seeds. *Radiation Physics and Chemistry*, 73(6), pp.365-367. [DOI.org/10.1016/j.radphyschem.2005.03.011](https://doi.org/10.1016/j.radphyschem.2005.03.011).

UmaVathi, S.; Mullainathan, L. (2016). Induced mutagenesis in Chickpea (*Cicer arietinum* (L.) with special reference to the frequency and spectrum of chlorophyll mutations. *Journal of Applied and Advanced Research*, 1(1): 49-53.

Vaiserman, A.; Cuttler, J.M.; Socol, Y. (2021). Low-dose ionizing radiation as a hormetic: experimental observations and therapeutic perspective for age-related disorders. *Biogerontology*, 22(2):145-164.

Van Harten, A.M. (1998). Mutation Breeding: Theory and Practical Applications. Cambridge University Press: pp 867

---

Walther, F. (1969). Effectiveness of mutagenic treatments with ionizing radiation in barley, induced mutation in Plants," *International Atomic Energy Agency (IAEA)*, Vienna, 1969: 261–270.

Wi, S.G.; Chung, B.Y.; Kim, J.H.; Baek, M.H.; Yang, D.H.; Lee, J.W.; Kim, J. S. (2007). Effects of gamma irradiation on morphological changes and biological responses in plants. *Micron*, 38(6): 553–564. <https://doi.org/10.1016/j.micron.2006.11.002>.

Zaka, R.; Vandecasteele, C.M.; Misset, M.T. (2002). Effects of low chronic doses of ionizing radiation on antioxidant enzymes and G6PDH activities in *Arabidopsis thaliana*. *Journal of Experimental Botany*, 53(370): 1979–1987.