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Abstract 

This article reviews and interprets exponential and integral functions on representations of some 

probability distributions. The literature survey covers Poisson distribution, Normal Distribution, 

Exponential Distribution, Gamma Distribution, and Weibull Distribution. The article explained in 

detail the contribution of both functions on the chosen probability distributions. The most 

important recommendation for those who want to be good statisticians is that they must have a 

good background in mathematics. 
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The overall Aim 

The overall aim of this article is to display the contribution of exponential and integral functions 

in some probability distributions, and to stimulate those who want to be a good statistician i.e. 

they should be familiar with these functions as well as other functions.  

Introduction 

Statistics provides models that are needed to study situations involving uncertainties, in the same 

way as calculus provide models that are needed to describe, say Newton Laws of motions. The 

names which are connected most prominently with the growth of mathematical statistics are R.A. 

Fisher, J. Neyman, E.S. Peorson and A. Wald (John and Ronold, 1980, P:2). R.A. Fisher who got 

a degree of Doctor of Science at University of  Evitcago in 1952 (George, 2014, P:1) , his name 

is connected with F distribution ,  George E.P.Box  concluded in his article some questions about 

Fisher which  might be asked : 

- Was he an applied statistician? 

- Was he a mathematical statistician? 

- Was he data analyst? 

- Was he a designer of investigation? 

It is surely because he was all of these he was much more than the sum of the part . He provides 

an example we can seek to follow (George, 2014, P:2).Some of mathematical topics have useful 

background to statistics and probability distributions : They are Boolean algebra , calculus , 

functions , mathematical transforms , and matrices . (E.Frend & Waple, 1980, P:177) claimed that 

“ The beginnings of the mathematics of statistics may be found in mid eighteenth – century studies 

in probability motivated by interest in games of chance. The theory thus developed for ″head or 

tails ″ or ″ red or black ″soon found applications in situations where the outcomes were ″boy or 

girl ″ or ″life or death″ or ″pass or fail″ and scholars began to apply probability theory to actuarial 

problems and some aspects of the social sciences and physics. 
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Literature of Some Probability Distributions 

Exponential Functions 

The origin of Exponential Function is the Binomial theorem is stated as: 

(1 + 𝑥)𝑛 = 1 + 𝑛𝑥 +
𝑛(𝑛 − 1)

2!
𝑥2 +

𝑛(𝑛 − 1)(𝑛 − 2)

3!
𝑥3 + ⋯ 

Replacing 𝑥 by  
1

𝑛
 

(1 +
1

n
)

n

= 1 + 𝑛 (
1

n
) +

𝑛(𝑛 − 1) (
1

n
)

2

2!
+

𝑛(𝑛 − 1)(𝑛 − 2) (
1

n
)

3

3!
+ ⋯ 

(1 +
1

n
)

n

= 1 + 1 +
(

n

n
) (1 − (

1

n
))

2!
+

(
n

n
) (1 − (

1

n
))(1 − (

2

n
))

3!
+ ⋯ 

Taking the limit as n → ∞ 

lim
n→∞

(1 +
1

n
)

n

= 2 +
1

2!
+

1

3!
+

1

4!
+ ⋯ 

                                        = e (known as a magic number) 

If we rase (1 +
1

n
)

n

  to  𝑥 , then (1 +
1

n
)

nx

  and taking the limit as   n         ∞ 

(1 +
1

n
)

nx

= 1 + 𝑛𝑥 (
1

n
) +

𝑛𝑥(𝑛𝑥 − 1) (
1

n
)

2

2!
+

𝑛𝑥(𝑛𝑥 − 1)(𝑛𝑥 − 2) (
1

n
)

3

3!
+ ⋯ 

(1 +
1

n
)

n𝑥

= 1 +
(

n

n
) 𝑥

1!
+

(
n𝑥

n
) (𝑥 − (

1

n
))

2!
+

(
nx

n
) (𝑥 − (

1

n
))(𝑥 − (

2

n
))

3!
+ ⋯ 

Taking the limit as n → ∞ 

lim
n→∞

(1 +
1

n
)

nx

= 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+ ⋯ = 𝑒𝑥 

Which known as Exponential function (KA Stroud, 2004, P:4). The Exponential function plays 

important roles in many probability distributions such as: Poisson Distribution, Normal 

Distribution, Exponential Distribution and Weibull Distribution. 
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Poisson Distribution 

Poisson distribution can be represented from the known Binomial distribution specifically, we 

shall investigate the limiting from the Binomial distribution whenn → ∞     and p → 0  , while np 

remains constant be λ  , that is 𝑛𝑝 = λ     , and hence   p =
λ

n
 

That could be explained as follows: 

b(x , n , p )  = (
𝑛

𝑥
) (

λ

n
)

𝑥

(1 −   
λ

n
)

𝑛−𝑥

 

=  
𝑛(𝑛 − 1)(𝑛 − 2) … . . ( 𝑛 − 𝑥 + 1 )

𝑥!
(

λ

n
)

𝑥

(1 −   
λ

n
)

𝑛−𝑥

 

Then one of x factors should be divided in (
λ

n
)

𝑥

 into each factor of the product 

𝑛(𝑛 − 1)(𝑛 − 2) … . . ( 𝑛 − 𝑥 + 1 ) and write 

(1 −  
λ

n
)

𝑛−𝑥

as:((1 −   
λ

n
)

-n

λ
)

−λ

(1 −   
λ

n
)

−𝑥

 

(1 −  
1

n
) (1 −   

2

n
) … . . (1 −   

x - 1

n
)

𝑥!
(λ)𝑥 ((1 −   

λ

n
)

-n

λ

)

−λ

(1 −   
λ

n
)

−𝑥

 

Finally, if we let n → ∞     while 𝑥and λ   remain fixed, we find that the limit becomes: 

(1 −  
1

n
) (1 −   

2

n
) … . . (1 −   

x - 1

n
)

x!
→ 1 

(1 −   
λ

n
)

−𝑥

→ 1 

(1 −   
λ

n
)

-n

λ

→ e 

and hence, that the Limiting distribution becomes: 

𝑝 ( 𝑥 , λ ) =  
λ

𝑥
e−λ

𝑥!
   for x =  0 , 1 , 2 , …. 
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which is a Poisson distribution this distribution, had been named after the French mathematician 

Simeon Poisson (1781 – 1840) (Susan and Jesse, 2003, P:9) 

The Integral Functions 

Some function are most conveniently defined in the form of integrals such   as Gamma function 

and Beta function (Stroud, 2004, P:125) 

The Gamma Function ⎾(x) is defined by the integral  

⎾(𝑥) =  ∫ t𝑥−1e−t   𝑑𝑡 and  is convergent for  𝑥 >   0

∞

0

 

If we replace  𝑥 𝑏𝑦  𝑥 + 1 

Then⎾(𝑥 + 1) =  ∫ t𝑥e−t   𝑑𝑡

∞

0

 

Integrating   by parts: 

⎾(𝑥 + 1) = [t𝑥 (
e−t

−1
)]

∞

0
+  𝑥 ∫ e−t t𝑥−1

∞

0

 𝑑𝑡 

= [0 − 0] + 𝑥⎾(𝑥) 

∴  ⎾(𝑥 + 1)     =    𝑥⎾(𝑥) 

Put   𝑛 = 𝑥 

⎾(𝑛 + 1)      =    𝑛⎾(𝑛) = (𝑛 − 1)⎾(𝑛 − 1) 

                         = (𝑛 − 1)(𝑛 − 2)⎾(𝑛 − 2) 

                          = (𝑛 − 1)(𝑛 − 2)    . . .    1⎾(1) 

⎾(1) =  ∫ t0e−t   𝑑𝑡

∞

0

= −[e−t ]
∞

0
=    0  +  1  =  1 

⎾(𝑛 + 1) =  𝑛(𝑛 − 1)(𝑛 − 2)  × 1 = 𝑛!  

∴  ⎾(𝑛 + 1)     =   𝑛!  
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For Example:⎾(7)     =   6!  =    720 

⎾ (
1

2
) = √𝜋 

The Beta Function 

The Beta function 𝐵(𝑚 , 𝑛 )  is defined by : 

𝐵(𝑚 , 𝑛 ) =  ∫ x𝑚−1(1-x )
𝑛−1   𝑑𝑥

1

0

 

which converges for   𝑚 > 0  and 𝑛 > 0 

putting (1 − 𝑥) =  𝜇    ∴ 𝑥 = 1 − 𝜇 

𝑑𝑥  =  − 𝑑𝜇 

Limits when 𝑥 = 0 , 𝜇 = 1 , 𝑤ℎ𝑒𝑛 𝑥 = 1 , 𝜇 = 0  

𝐵(𝑚 , 𝑛 ) =  − ∫ (1-𝜇)
𝑚−1𝜇𝑛−1   𝑑𝜇

0

1

 =  ∫ (1-𝜇)
𝑚−1𝜇𝑛−1   𝑑𝜇

1

0

 

= 𝐵(𝑛 , 𝑚 ) 

∴ 𝐵(𝑚 , 𝑛 ) =  𝐵(𝑛 , 𝑚 ) 

The Relation between gamma and beta functions: 

𝐵(𝑚 , 𝑛 ) =
⎾(𝑚) ⎾(𝑛)

⎾(𝑚 + 𝑛)
 

The Normal distribution 

A random variable has a normal distribution and it is referred to as a normal random variable if 

and only if its probability density is given by: (John and Ronold, 1980, P:5) 

𝑁(𝑥 , 𝜇 , 𝜎 ) =
1

𝜎√2𝜋
𝑒−

1

2
(

x-𝜇

𝜎
)

2

for − ∞ < 𝑥 < ∞  where 𝜎 > 0  

Where 𝜎 is the standard deviation and 𝜇 is the mean of the distribution, we need to show that the 

total area from −∞ 𝑡𝑜 ∞ 𝑖𝑠 1 ,  making the substitution 𝑧 =  
𝑥− 𝜇

𝜎
   we get: 

∫
1

𝜎√2𝜋
𝑒−

1

2
 z2

𝑑𝑧 =
2

√2𝜋
∫ 𝑒−

1

2
 z2

𝑑𝑧

∞

0

∞

−∞

 

Since ∫ 𝑒−
1

2
 z2

𝑑𝑧 =
⎾(

1

2
)    

√2
=

√𝜋

√2

∞

0
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Then ∫
1

𝜎√2𝜋
𝑒−

1

2
 z2

𝑑𝑧 =
2

√2𝜋
  ×

√𝜋

√2
 = 1

∞

−∞

 

Moment Generating Function 

The exponential function plays an impartment role is evaluating the moment generating function 

for the probability distribution, the two expectations𝐸[𝑥]𝑎𝑛𝑑 𝐸[𝑥2] are very useful in determine 

the mean and the variance of the distributions. 

Definition 

Let x be a random variable with Discrete probability distribution the moment generating function 

for x is denoted by:  mx(t)  =  E[𝑒𝑡𝑥] 

Gamma Distribution 

The theoretical basis for gamma distribution is the gamma function (KA Stroud,2004,P:136) 

Definition  

A random variable x with density: 

𝑓(𝑥) =  
1

⎾(∝)𝛽𝑛
𝑥∝−1𝑒

−𝑥
𝛽⁄

 

𝑥 > 0 , ∝ > 0 , 𝛽 > 0 

is said to have a gamma distribution with parameter  ∝   and  𝛽  with moment generating as : 

mx(t) =  (1-βt)
−∝

𝑡 >
1

𝛽
 

and mean =  ∝ 𝛽  , variance = ∝ 𝛽2 

proof: 

by definition: 

mx(t)  =  E[𝑒𝑡𝑥] 

= ∫ 𝑒𝑡𝑥

∞

0

1

⎾(∝)𝛽∝
𝑥∝−1𝑒

−𝑥
𝛽⁄ 𝑑𝑥                             (1) 
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=
1

⎾(∝)𝛽∝
∫ 𝑥∝−1𝑒

−(
1

𝛽
 − 𝑡)𝑥

∞

0

𝑑𝑥                          (2) 

𝐿𝑒𝑡 𝑧 = ( 1 −  𝛽𝑡)
𝑥

𝛽
 

𝑥 = 𝛽𝑧( 1 −  𝛽𝑡) 

𝑑𝑥 = 𝛽𝑑𝑧( 1 −  𝛽𝑡)                                                               (3) 

Substituting in  (2) 

mx(t) =
1

⎾(∝)𝛽∝
∫  (

𝛽𝑧

1 −  𝛽𝑡
)∝−1

𝑒−𝑧𝛽𝑑𝑧

(1 −  𝛽𝑡)

∞

0

 

=
1

⎾(∝)𝛽∝

𝛽∝

(1 −  𝛽𝑡)∝
∫ 𝑧∝−1

∞

0

𝑒−𝑧 𝑑𝑧                                      (4) 

𝑆𝑖𝑐𝑒: ⎾(∝) = ∫ 𝑧∝−1

∞

0

𝑒−𝑧 𝑑𝑧 

Then: mx(t) =
1

⎾(∝) (1 −  𝛽𝑡)∝
× ⎾(∝) 

                            = (
1

1 −  𝛽𝑡
)∝ =  (1 −  𝛽𝑡)− ∝ 

𝑡 <
1

𝛽
      to avoid division by zero  

To find then mean: 

𝑢 = E[𝑥] =
𝑑

𝑑𝑡
(mx(t)) 

=
𝑑

𝑑𝑡
 (1 −  𝛽𝑡)− ∝

t=0 

                  = − ∝  (1 −  𝛽𝑡)− (∝+1) × − 𝛽 

= ∝ 𝛽 

𝑣𝑎𝑟(𝑥) = E[𝑥2]−𝐸[𝑥]2 
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E[𝑥2] =
𝑑2

𝑑𝑡2
(mx(t)) =

𝑑2

𝑑𝑡2
 (1 −  𝛽𝑡)− ∝

𝑡=0
 

          =∝ (∝ +1) (1 −  𝛽𝑡)− ∝−2 × − 𝛽𝑡=0 

 =∝ (∝ +1) 𝛽2 

𝑣𝑎𝑟(𝑥) =∝ (∝ +1) 𝛽2 −  (∝ 𝛽)2 

                                    =  ∝2 𝛽2 +  ∝ 𝛽2 −  ∝2 𝛽2 =    ∝ 𝛽2 

Hence the mean and variance of gamma distribution as: 

𝜇 = ∝ 𝛽 𝑎𝑛𝑑 𝑣𝑎𝑟(𝑥) =  ∝ 𝛽2 

The Beta Distribution 

Definition  

A random variable X has a beta distribution and it is referred to as beta random variable if and 

only if: 

𝑓(𝑥) = {
⎾(∝ +𝛽)

⎾(𝛼)⎾(𝛽)
𝑥∝−1(1 − 𝑥)𝛽−1   for     0 < 𝑥 < 1

    0                                         𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 

 

We need to show that: 

∫
⎾(∝ +𝛽)

⎾(𝛼)⎾(𝛽)
𝑥∝−1(1 − 𝑥)𝛽−1   dx   =     1 

1

0

 

That is: 

∫ 𝑥∝−1(1 − 𝑥)𝛽−1   dx =
⎾(𝛼)⎾(𝛽)

⎾(∝ +𝛽)

1

0

 

                                                                                              =
⎾(∝ +𝛽)

⎾(𝛼)⎾(𝛽)
∫ 𝑥∝−1(1 − 𝑥)𝛽−1   dx 

1

0

 

                                                                                           =
⎾(∝ +𝛽)

⎾(𝛼)⎾(𝛽)
  ×

⎾(𝛼)⎾(𝛽)

⎾(∝ +𝛽)
    =    1 
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The mean and the variance of beta distribution: 

𝑡ℎ𝑒 𝑚𝑒𝑎𝑛:   𝜇 =
𝛼

∝ +𝛽
 

𝜎2  =  
𝛼𝛽

(∝ +𝛽)2(∝ +𝛽 + 1 )
 

By definition: The mean is       

𝜇 =   E[𝑥] 

                                                                  =
⎾(∝ +𝛽)

⎾(𝛼)⎾(𝛽)
∫ 𝑥∝−1(1 − 𝑥)𝛽−1   dx    

1

0

 

                                                               =
⎾(∝ +𝛽)

⎾(𝛼)⎾(𝛽)
∫ 𝑥∝−1(1 − 𝑥)𝛽−1   dx

1

0

 

Since 

∫ 𝑥∝−1(1 − 𝑥)𝛽−1   dx    

1

0

=  𝐵(∝ , 𝛽 ) 

and 

𝐵(∝ +1 , 𝛽 ) =   
⎾(𝛼 + 1)⎾(𝛽)

⎾(∝ +𝛽 + 1)
 

                      =   
𝛼⎾(𝛼)⎾(𝛽)

⎾(∝ +𝛽 + 1)
 

𝜇 =  
⎾(∝ +𝛽)

⎾(𝛼)⎾(𝛽)
∫ 𝑥∝−1(1 − 𝑥)𝛽−1   dx    

1

0

=  
⎾(𝛼 + 1)⎾(𝛽)

⎾(∝ +𝛽 + 1)
×

⎾(∝ +𝛽)

⎾(𝛼)⎾(𝛽)
 

∴   𝜇 =  
⎾(∝ +𝛽)

⎾(𝛼)⎾(𝛽)
 × 

𝛼⎾(𝛼)⎾(𝛽)

⎾(∝ +𝛽)(∝ +𝛽)
=  

𝛼

∝ +𝛽
 

𝜎2 =  E[𝑥2]   −   E[𝑥]2 

E[𝑥2] = ∫
⎾(∝ +𝛽)

⎾(𝛼)⎾(𝛽)
𝑥∝+1(1 − 𝑥)𝛽−1   dx    

1

0

 

𝑆𝑖𝑛𝑐𝑒: ∫ 𝑥∝+1(1 − 𝑥)𝛽−1   dx    

1

0

=  𝐵(∝ +2 , 𝛽 ) 
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𝑎𝑛𝑑 𝐵(∝ +2 , 𝛽 ) =
⎾(𝛼 + 2)⎾(𝛽)

⎾(∝ +2 + 𝛽)
 

                                                      =   
(𝛼 + 1)⎾(𝛼 + 1)⎾(𝛽)

(∝ +𝛽 + 1)⎾(∝ +𝛽 + 1)
 

                                                           =   
𝛼(𝛼 + 1)⎾(𝛼)⎾(𝛽)

(∝ +𝛽 + 1)(∝ +𝛽)⎾(∝ +𝛽)
 

E[𝑥2]  =  
⎾(∝ +𝛽)

⎾(𝛼)⎾(𝛽)
 × 

𝛼(𝛼 + 1)⎾(𝛼)⎾(𝛽)

(∝ +𝛽 + 1)(∝ +𝛽)⎾(∝ +𝛽)
=

𝛼(𝛼 + 1)

(∝ +𝛽 + 1)(∝ +𝛽)
 

𝜎2  = 𝐸[𝑥2]− 𝐸[𝑥]2 =
𝛼(𝛼 + 1)

(∝ +𝛽 + 1)(∝ +𝛽)
  −  

∝2

(∝ +𝛽)2
 

                                        =
𝛼(𝛼 + 1)(∝ +𝛽) −∝2 (∝ +𝛽 + 1)

(∝ +𝛽 + 1)(∝ +𝛽)2
 

                                               =  
∝3+∝2 𝛽 +∝2 +∝ 𝛽 −∝3−∝2 𝛽 −∝2

(∝ +𝛽 + 1)(∝ +𝛽)2
 

∴ 𝜎2  =
𝛼𝛽

(∝ +𝛽)2(∝ +𝛽 + 1 )
 

The mean and variance of beta distribution are: 

𝜇 =  
𝛼

∝ +𝛽
  𝑎𝑛𝑑 𝜎2  =

𝛼𝛽

(∝ +𝛽)2(∝ +𝛽 + 1 )
 

The Weibull Distribution  

Definition 

A random variable x is said to have a Weibull distribution with parameter 𝛼  𝑎𝑛𝑑 𝛽  if its density 

is given by: (Stroud, 2004, P:129) 

𝑓(𝑥) = ∝ 𝛽  𝑥𝛽−1𝑒−∝𝑥𝛽
 , 𝑥 > 0 , ∝> 0 , 𝛽 > 0 

The mean of distribution is: 

𝜇 = 𝛼
−

1

𝛽 ⎾(1 +
1

𝛽
) 

Proof : 

𝜇 =   E[𝑥] 

                                               = ∫  𝑥 ∝ 𝛽  𝑥𝛽−1𝑒−∝𝑥𝛽
   dx    

∞

0
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                                = ∫   ∝ 𝛽  𝑥𝛽𝑒−∝𝑥𝛽
   dx    

∞

0

 

𝐿𝑒𝑡:    𝑧 =  ∝ 𝑥𝛽 

          𝑥 = ( 
𝑧

𝛼
)

1

𝛽 

                    𝑑𝑥 =
1

𝛽
( 

𝑧

𝛼
)

1 

𝛽
 −1

 𝑑𝑧 

𝑇ℎ𝑒𝑛:      E[𝑥] = ∫   ∝ 𝛽 ( 
𝑧

𝛼
) 𝑒−𝑧( 

1

𝛼𝛽
)( 

𝑧

𝛼
)

1 

𝛽
 −1

dz

∞

0

 

= ∫( 
𝑧

𝛼
)

1 

𝛽𝑒−𝑧   dz    

∞

0

 

    = 𝛼
−

1 

𝛽 ∫ 𝑧
1 

𝛽𝑒−𝑧   dz    

∞

0

 

𝑆𝑖𝑛𝑐𝑒:   ∫ 𝑧
1 

𝛽𝑒−𝑧   dz    

∞

0

=  ⎾(1 +
1 

𝛽
) 

∴  E[𝑥] =  𝜇 =  𝛼
−

1 

𝛽⎾(1 +
1 

𝛽
) 

𝜎2 = E[𝑥2] − E[𝑥]2 

E[𝑥2] =  ∫  𝑥 2  ∝ 𝛽  𝑥𝛽−1𝑒−∝𝑥𝛽
   dx    

∞

0

 

   = ∫   ∝ 𝛽  𝑥𝛽+1𝑒−∝𝑥𝛽
   dx    

∞

0

 

𝐿𝑒𝑡:  𝑧 =  ∝ 𝑥𝛽 

𝑥 = ( 
𝑧

𝛼
)

1

𝛽 

𝑑𝑥 = (
1

𝛼𝛽
)( 

𝑧

𝛼
)

1 

𝛽
 −1

 𝑑𝑧 
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E[𝑥2] =  ∫   ∝ 𝛽 ( 
𝑧

𝛼
)

1+
1 

𝛽
𝑒−𝑧

𝛼𝛽
( 

𝑧

𝛼
)

1 

𝛽
 −1

   dz    

∞

0

 

=  ∫( 
𝑧

𝛼
)

2 

𝛽𝑒−𝑧   dz    

∞

0

 

=  ( 
1

𝛼
)

2 

𝛽 ∫ 𝑧 
2 

𝛽𝑒−𝑧   dz    

∞

0

 

=  𝛼
−

2 

𝛽⎾ (
2 

𝛽
+ 1) 

𝜎2 = E[𝑥2]− [𝑥]2 

                         =  𝛼
−

2 

𝛽⎾(
2 

𝛽
+ 1) − (𝛼

−
1 

𝛽(⎾1 +
1 

𝛽
))

2
 

∴ 𝜎2 =  ( 
1

𝛼
)

2 

𝛽⎾(
2 

𝛽
+ 1) −  ( 

1

𝛼
)

2 

𝛽 (⎾ (1 +
1 

𝛽
))

2

 

Discussion 

The origin of Exponential function, Gamma and beta functions has been introduced.  Grasping 

those functions helps to understand the behaviour of the probability distributions. Looking at 

Poisson distributions it could be seen that it is impossible to determine the probability function 

without the exponential function. The Poisson distribution function is written as: (Sanders and 

Smidt, 2000, pp 177-178) 

𝑝 ( 𝑥 , λ ) =  
λ

𝑥
e−λ

𝑥!
 𝑓𝑜𝑟 𝑥 =  0 , 1 , 2 , 3, … 

Some authors tended to evaluate e−λ to make life easy: They constructed table for e𝑥 and e−x  one 

of the mis Frenund in his book (John and Ronold, 1980, P:16) 

The gamma function reduces a lot of work specially in Integrating some difficult integral of the 

from: 
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∫ 𝑡𝑛𝑒−𝑡   dt     

∞

0

 

and also, the evaluation of  ⎾(
1 

2
) which has been use in proving the function of standard normal 

function which severs as a probability density function. 

The Beta function involved in the Beta distribution function,helps to find the mean and the 

variance of the distribution. 

Conclusion 

In this article, the exponential and integral functions have been displayed. 

The roles in some probability distributions have been explained. Those who intend to be good 

statisticians are recommended to have good background in mathematics. 
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