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Abstract

This study aimed to study Gateaux differentiability of the functional@,, o (f) = fooo O(fHw
and of the Luxemburg norm, it followed the descriptive method and the study found that we can
obtain the one-sided Gateaux derivatives in both cases by characterizing those points where the
Gateaux derivative of the norm exists, we obtain a characterization of best ¢, g-approximants
from convex closed subsets, there a relation between best @, ¢ -approximants and best

approximants from a convex set.
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Introduction
Let M, be the class of all real extended u-mmeasurable functions on[ 0,a),0 < a < oo, where u

is the Lebesgue measure. As usual, for f € Mywe denote its distribution function by pfq) =
p0 < x < a:|f(x)| > QP (Q = 0), and its decreasing rearrangement by

F1(1 +2€) = inf{Q: pp (A) < 1+ 2¢} (e > ‘?1)

If two functions f and g have the same distribution functions we say they are equimeasurable and
we denote it by f~g.

For other properties of u; and f*, (see Bennet and Sharpley 1988, pp.36-42).

Let @: R, — R, be differentiable,convex,(0) = 0,8(1 + 2¢) > 0 fore > _71 and let

w : (0,a) — (0, ) be aweight function, non-increasing and locally integrable.

If @ = oco,we assumelim; 5., w(1 + 2¢) = 0 and f0°° w(1+ 2€)du(1 + 2¢€) = oo.

For f € Moletg,,o(f) = [ 0(f*(1 + 26))w(1 + 2€) du(1 + 2€)
In (Hudzik, Kaminska and Mastylo 2002 and Kaminska 1990 —Kaminska 1991), several authors
studied geometric properties of the regular Orlicz-Lorentz spaces,
{f € My: 9, 9(Af) < oo for someQ > 0}. The main ojective of this section is to study
differentiability properties in the following subspace

Ayg = {f € My: ¢, ¢(Qf) < oo for allQ > O},

which appears to be convenient for our purpose. Under the norm given by

flloo = inf{e > 0: 90 @ < 1},
A, ¢ is a Banach space (Kaminska 1990). It is clear that if w is constant, A,, ; becomes a subspace
of finite elements Ly of the Orlicz space Ly (see Rao and Ren 1991). On the other hand, setting
B(14 2¢) = (14 2€)'*¢,0 < € < oo, we obtain the Lorentz space L, 1+¢)and
©uo(f) =If ||%;jj +e)- These weighted Lorentz spaces as a generalization of Lorentz space have
been studied in (Halperin 1953).
If w(1+ 2¢) = (g) 1+ 26)(1_:)_1,0 < —€e< €<,
a good reference for a description of these spaces in L(1 + €,1 — €)spaces in (Hunt 1966).A

function o:[0,@) — [0,a)is called a measure preserving transformation (m.p.t) if for each u-

49



Applications of Orlicz-Lorentz Spaces in Gateaux Differentiability

measurable set I c [0,a),5~1(I) is u-measurable and (0‘1(1)) = u(I). It is very important to
emphasize that any m.p.t induces equi-measurability, that is, if

g € Mythen|g| o o is a u-measurable function on[0,a)and |g| o o~|g|.For g € M,,we denote
supp(g) = {0 < x < a: g(x) # 0}.In view of the assumptions on the weight w, if

f €Ayg, then limy s 0 f*(1 + 2€) = 0.In consequence, by Ryff's Theorem (Bennet and
Sharpley, 1988) there is an m.p.t o: supp(f) — supp(f*)such that

Ifl = f*e0o p—ae onsupp(f)(1.1)
Moreover, if a: supp(f) — supp(f*)is any m.p.t fulfilling (1.1), then

oo = f 0 (@)0(If1) d

supp(f)
In fact, since @(f*)w~@(|f|)w(a), so their integrals are equal (see Bennet and Sharpley 1988).

LetT: A, — R be a functional. For f,h € A, ¢ we will use in this work the one-sided Gateaux

I + . T(f+h(1-26))-T(f)
derivatives y7 (f, h) = 1_12120+ = and

_ . T(f+h(1-2€))-T(f)
= 1
vr(f,h) 1-2650- 1-2¢

. (Carothers et al., 1993) showed that if @ = oo, @(1 +

2€) = (1 + 2e)'*¢, 0< e <, and w is astrictly decreasing function, then
Voo s 1) = (L +€) [ w(ten) I fIE(1 — 2€)g (R d p, where(ty ;)is defined by
(7r0) ) = up(IF D
+u({y: If I = If ) land R (A = 26)g(f ) > h(x)(1 = 26)g(f (x))})
+u(y: 1f O = IfLROA = 26)g(f (1) = h(x)(1 - 26)g(f (x))and y
<x}). (1.2)
It is known thatzy pis an m.p.tand |f| = f* o 7, u-a.e. onsupp(f)(see Ryff 1970).
In one sided Gateaux derivatives in A, g, we generalize this result. Usinga technique similar to that
in (Levis and Cuenya, 2004, Theorem 2.6), we compute the one-sided Gateaux derivative of the
modular for 0 < a < oo, wa non-increasing function, and @, a convex function.Here,we need to
work with a suitable m.p.t. Also, we obtain the one-sided Gateaux derivative for the norm |||, g,
called also the Luxemburg norm.
We say that f € A, gis a smooth point for T if there exists the Gateaux derivative of the functional
Tinf,ieify;(f,h) = yz (f,h) forall h € A, gand we denote it by y7(f, h). The set of smooth

points for the functionalg,, 4 Was investigated in (Levis and Cuenya, 2004).
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Let K c A, gand f € A, gbe given, and considerthe problem of finding h* € K such that

T(f —h) = inf T (f = h) =:Er (f, K). (1.3)
Denote by P;(f, K)the set of allh* € K fulfilling (1.3). Each element of P;.(f, K) will be called the
best T-approximant of f from K. If Tis the Luxemburg norm, we only say the best approximant
fromK. Leta =1, let (1 + 2¢) = (1 + 2¢e)*€with 0 < € < oo, let f be a simple function in
Ayg, andletK == {g € A, 4:g is constant}.
In (Levis and Cuenya, 2004), we give a characterization of the best ¢, 4- approximants of f from

K and we show the way to obtain the best ¢, 3-approximants maximum and minimum, which will

be denoted byf and f respectively.We give a characterization of the best ® ¢ -approximants
off € A, from a convex closed set, K, and we establish a relation between the bestg,, -
approximants and the best approximants from K.Finally, we give a characterization of the best
constant ¢, g-approximants and we calculate the best constante,, g-approximants maximum and
minimum (Levis and Cuenya, 2007).

2.0 One sided Gateaux derivatives in A4, 4

We let f,h € A, 4for each € > %,We consider any m.p.t.

Of +h(1-2¢€): supp(f + h(1 - 26)) - supp((f + h(1 - 26))*) such that

If + h(1 —2¢)| = (f + h(1 - 26))* © Of4+h(1-2¢)-a.€.0N supp(f + h(1 - 26)).
In (Levis and Cuenya 2004), we showed that lim;_;._,o 07 (x) = Ofrp-20-a.€ ON E(f) N

supp(f) where E(f) == {0 < x < a: p{lf| = |f (x)[} = 0}
However, we give an example which shows that this result does not hold on the whole supp(f)

(Levis and Cuenya 2007).

Example 2.1 Fora =1,letf =2, | + xj1 ,and h = xj13).For 1<e<0,
d) " Y [+3) 2
we consider the m.p.t. defined by
1 1

O(f+n1-2)(X) = (x + Z) )([0%) + (x - Z) XE%) + xXE,n'

and for% < € < 0the m.p.t. defined by
1 1
O(f+n1-26)(X) = o2y * (X + Z) Xz + (x - Z)XEJ)-

We observe that for all 0 < x < 1,1im;_5¢_0 0 (54 n(1-2¢)) (X)dOES NOL eXist.
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Now our purpose is to define a sequence of m.p.t.os, (1-2¢)n
such that limg; _z¢) 0 f+(1-2¢),,n (X)€Xist for x € supp(f) U supp(h).To prove it we need some
auxiliary lemmas.
Lemma 2.2 Let R < [0,a)be a u-measurable set with u(R) = b > 0.
Thena: [ 0,a) — [0, b)defined by a(x) = u(R n [0, x])is a non-decreasing continuous function
with ¢(0) = 0 and lim,_,,- c(x) = b.
Lemma 2.3 Let ¢ be the function given in Lemma 2.2. Theno: R — [0, b) is an m.p.t.We denote
such ¢ by op.
Proof. Let 0 < Q < b. From Lemma 2.2 there exists 0 < x < a such that ¢( x) = Q.
We consider xq = sup{x: a(x) = Q}. .Sincelim,_,,- 0(x) = b,xq < a
show that {x € R: ox(x) > Q} = R N (xq, a).
Let x € R be such that ox(x) > Q. If x < xq , from Lemma 2.2 gz (x) < ozr(xq) = Q and this a
contradiction. Thus x € R N (xq, a).On the other hand,
ifx € RN (xq,a),0r(x) = ag(xg) = Q.If ox(x) =Q
thenxg, is not the supreme and this is another contradiction. Thereforeag (x) > Q.Then
Hop (@) = u(R N (xq, @)). (2.1)
Now, we consider g(x) =x,0 < x < b.
From (2.1) and the continuity of o, we have p,, (Q) = b —a(xq) = b — Q = u,(Q).
In consequence o; and g are equimeasurable functions. If [ is any u-measurable subset of
[0,b), then g~1(I) = I is a u-measurable set. From (Bennet and Sharpley 1988, Lemma 7.3),
or *(1)is u-measurable and p(az (D) = u(g=*(1)) = p(D). The proof is complete.
Let f € A, . By redefining f, if necessary, on a set of u-measure zero , we may assume that

|fland f* have the same non-null range, say R( f). For Q € R(f), we consider Cf(Q) :=
(0<x<alf(x)|=0}and [;(Q) = {e > (14 2€) = Q}. So,

U (Cf(ﬂ)) =uU (If(ﬂ)) < o0, By Lemma 2.3, the function aq: Cr(Q) - Ir(Q)

defined byoq(x) = ur(Q) + 1 (Cf(ﬂ)) N [0, x]is an m.p.t. Thus, the function

07 (x) = 00 (x) (x € cf(n)) (2.2)

is an m.p.t. from supp (f) onto supp(f*).
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Remark 2.4 Given f € A, 4 We can write
or () = ur(IfF D + ul{y: If I = If(x)]and y < x}).
If u(supp(f)) < oo, then oy is an m.p.t. from[0,a) into [0,a).
Lemma25Letf,h € A,gand letQ > 0. If p (Cf(ﬂ)) = 0, then u is acontinuous function at
Qand limy _5¢ .0 frrn(1-26)(Q) = up(Q).
Proof. Since u; is a right continuous function, it is sufficient to show that
limy_pc0- ur(1 —2€) = ur(Q). Let((1 — 2€),),be a sequence such that
0<(1—-2¢), TQandC, = {y:|f)| > 1 —2€),}.
Clearly C,.+1 € Chand u(C;) < ©.As u (Cf(ﬂ)) =0, we get

[0e]

lim iy (1= 2€),) = (ﬂ cn> = w(@:1FO) = 0P = uy ().

n=1

Now we shall prove thatlim; _,c_otfin1-2¢)(Q2) = pp(Q).Let 1 — 26,0 < |1 — 2¢| < 1.

Using properties of the distribution function we obtain

trina-26) () = Urin@-2e) ((1 -1 26|) Q+[1- 2€|Q>
|1 — 2¢]|
Sllf((l—ﬂll—ZEl)Q)-F Un mﬂ (23)

< i .
andup (@) < lim pripa-2e) (Q)

T=g) o

|1-2¢€|

In addition,lim, _se—o 1/ ((1 - JT—2€) Q) = 1, ().

So (2.3) implies that 1_152an Krina-2¢) (Q) < pup(Q).

Since h € A, 5 we havelim;_,._,q iy (

The proof is complete.

Remark 2.6 Let f € A,y and Q > 0. Clearly u({y: |f(y)Xc—(m(y)| = Q}) =0, where 4 =
f
[0,a)- A. Thus, Lemma 2.5 implies that ¢, is continuous at Q.
Cr(Q)

Lemma2.7 Let f,h€ A,y .IfQ>0andx € C(Q),

then lim Hr+(-20mxg (1f () + (1 = 2e)h(0)]) = pr(Q).
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Proof. It is enough to operate on decreasing sequence (1 — 2¢),,, which we denote by(1 — 2¢),, {

0 .Sincelim |f(x) + (1 — 2¢€),h(x)| VA~26n _ 5 and f,h€ A,g,then
n—>0o

(1-26)p
Ja=2e.,
lim (If(X) +(1= 200,000 %) = 0. 24)

In fact, (2.4) is obvious if & < oo. For a = o, (2.4) follows from our assumptionfoww(l +
2e€)du(1 + 2€) = oo. Using properties of the distribution function we obtain,
.u(f+(1—26)nh))(m(|f(x) + (1 = 2€),h(x)])

< e (PG + (1= 200,001 (1 - VT = 26),))

(1 - Ze)n)

+ Hn (1-2¢),

(If(x) + (1= 2e)n,h(x)|

Xer@
So, (2.4) implies that
T 4+1-26)mity (F GO + (1= 26,k (0D <y (@), (2.5)
On the other hand, as shown in (Bennet and Sharpley 1988), it is known that
e (Q) = ﬂf;{m(ﬂ) < lim .uU+(1—26)nh)XW(|f(x) + (1 = 2€),h(0)D. (2.6)

From (2.5) and (2.6) the proof follows immediately.
Lemma28Letf,h€ A,y IfQ>0andx € C(Q),

Then
im e ({y € G@:1fG) + (1= 20h()] = If @) + (1 - 20h()| and y < x}) = 0.
Proof. Let(1 — 2¢),, 1 0,C,, ==
{y € G@:1f ) + (1 = 26),h()| = If () + (1 — 26),h(x)| and y < x}
and D,, = {y € G;(@) : I G- GOl < (1 = 26, (IR + |A(x))and y < x}
Clearly ¢, € D,, c [0,x],Dp4q € Dpand Ny=y D, = @
Then 0 < lim u(Cy) < lim u(Dy) = p(Ny=1 Dp) = 0.
Lemma29Letf,h € A,q. IfQ >0 andx € C(Q), then
lim | u({y € Cr(): 1f () + (1 = 20)h(N| > If () + (1 = 2)h(0)1})

= u({y € C;(): (1 - 26)g(f (Mh() > (1 = 26) g (f (x)h(x)}).
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Proof. Let (1 — 2¢),, 1 0,

Ry = {y € G (W:1f(y) + (1 = 26),h(Y] > |f (x) + (1 = 2€),h(x)] and [ (y)]

= %}

(1= 26)n = {y € G(@: If ) + (1 = 2)uh()] > If (x) + (1 — 2€),h(x)] and|h(y)| >

Q
(1-26)n

R={y € (;(): (1 - 2)g(f(MA(Y) > (1 = 26)g(f (Dh(x)}.
As (1= 26)2) < in () limnos (L = 26)5) = 0.
Then, it will be sufficient to prove that
lim,, o u(R,) = u(R)Let N € N be such that if n > N,
fG) + (1 = 2),h(0)] = @ + (1 = 2€), (1 — 2€)g (f () h(x).

Then, forn > N,R, c R.Infact, ify € R,,, |h(y)| < 25

} and

. Therefore,
If) + (1= 26),h(N] = Q + (1 = 26),(1 = 26) g (f () h(¥). (2.7)
So,
QO+ (1-26),(1-28)g(fM)h() = If ) + (1 = 26),h(M)] > |f (x) + (1 = 2€),,h(x)]
=Q+ (1-26),(1-26)g(f(x))h(x)
and consequently (1 — 2&)g(f(»)h(y) > (1 — 26) g(f (x) ) h(x).
Foralln > N,R = R,  {y: |h(y)| >

Q
(1—26)n}'

Q
(1-26)p '

If() + (1 —26),h()| = Q+ (1 - 26),(1 - 26)g(f(M)h(y) > 0+ (1 - 26),(1 -
26)g(f())h(x) = |f(x) + (1 — 2€),h(x)], which is a contradiction.

On the contrary, lety € R — R,, be with |h(y)| <

From (2.7) we have

Since u(R — R,,) < uy, ( ) we have

lim u(Ry) = pu(R). (2.8)
Lemma2.10 Let f,h € A, 4. 1f Q> 0and x € C;(Q), then
lim  u({y € G@:1f () + (1 = 20)h()] = If () + (1 — 2€)h(x)| and y < x})

= u({y € ¢:(@): (1 = 26)g(f W) (¥) = (1 = 2€)g(f () )h(x) and y < x}).

Q
(1-26)n
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Proof. Let(1 — 2¢),, 1 0,

Ry = {y € Cr(W:1f () + (1 =26, h(M) = If () + (1 = 2€),h(x) ], A ()]

< _ <
< (1_26)nandy_x},

(1= 260, = {y € GO IFO) + (1 = 20,k = IF () + (1 = 26,k @), R )]

— <
> (1_26)nandy_x}

and R := {y € C;(Q): (1 - 26)g(f (M) = (1 — 26)g(f (x)h(x) and y < x }.
Now,the proof follows in the same way as in Lemma 2.9
Theorem2.11 Let f,h € A,g and let 7 ,be defined by (1.2).
(a) If x € supp(f), limy g+ Opnca—2e)(X) = T ()
(x).
Proof. (a) Let x € supp(f)and define Q = |f(x)|. We observe that for all sufficiently small 1 —

(b)If x € supp(h) — supp(f),lim;_. o+ Uf+h(1—26)(x) = llf(O) + Un

supp (h)-supp(f)

2€,x € supp(f + h(1 — 2€)). Hence, we get

T(ran-20) ) = K(panti-20)e (F ) + (1= 200D + e ({y € G@: 17 ) + (1 -

26)h()] = If () + (1 - 2)h()land y < x}) + u({y € C(Q): If &) + (1 = 2)h(y)| >
If(x) + (1 =26)h()I}) + u({y € C;(O:If(») + (1 = 26)h(W)| = |f(x) + (1 —
2€)h(x)| and y < x}). Therefore, Lemmas 2.7 - 2.10 imply ( a).

(b) Let x € supp(h) —supp(f). Suppose u supp(f) < o.

Forall e > 21 ,X € supp(f + (1 — 2¢€)h).Then ,we have

0 +(1-20n(x) = u({y € supp(f): [f(y) + (1 — 2e)h(y)| > (1 — 2e)|R(x)|})

+ u({y € supp(f):If(y) + (1 = 2e)h(y)| = (1 — 2¢)|h(x)|and y < x})
+ oy (). (2.9)

According to Lemma 2.8 the second term of (2.9) tends to zero. We only need to prove that the

supp(h)-supp(f)

first term tends tou,(0).
Ri—2¢) = {y € supp(f): If (¥) + (1 = 2e)h(y)| > (1 — 2e) |h(x)[},
T—2¢) = {y € supp(f) : [f () = (1 = 2e)(|h(Y)| + [R(x) )}

Sincelim; _,._,o+ #(T1_5) = 0 and
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supp(f) — Ri—2¢ € Ty—26, (2.10)
then lim; _, .o+ u(R1—2¢) = u(supp(f)) = us(0).
Now, suppose that u(supp(f)) = « .Given M > 0, we can choose (1 — 2€); such that
ur(1(1 = 26);1 (1) > M and p (Cr(I(1 = 2€);: (D) = 0.
Then by Lemma 2.5 we obtain
limy e tpsa-zon(I(1 = 261D = (11— 26)A DM . Thus, prr—zen(I(1 -
2¢),h(x)|) > M for all sufficiently small (1 — 2¢).
It follows that M < pieip(1-2¢)(1(1 — 2€) h(x)]), for all sufficiently small (1 — 2¢).
Finally, as psypn—26)(|(1 = 26)h(x)]) < 0f1n(1-2¢)(x), the proof of ( b) is complete.
Definition 2.12 Let f,h € A, ¢.We define

— Tf ,h(x)if x € supp(f)’
Pra(¥) = {:“f(o) + on (x) if x € supp(h) — supp(f)

Example 2.13 Let f,h € A, ¢.If (supp(f)) < o,

supp (h)-supp(f)

then ps , is m.p.t. from supp(f) U supp(h)onto[ 0, usupp(f) U supp(h))) such that |f]| =
f"oprpu-ae. on supp(f) U supp(h).Let f,h € A,q4 and let (1 — 2¢e) be non- zero real

number. We denote

F(1-2¢) = (b('“h(ll__zzezl_mm).The next result is one of the main theorems of this section.

Theorem 2.14 Let ,h € A, 4 .Then
Yoo 1) =

[ oo trna - 209 due + 04.(0) w(ppn)lkl dit, (211)
supp(f) supp(h)-supp(f)

where@’, (0)is the right derivative of @ at 0. In (2.11) , we write w(o) = 0.

Proof. Assume that u (supp(f)) < oo .Lete > % Clearly

Puo(f +h(1—26) = W(0fin1-20)0 (If + h(1 = 26)|) du
supp(f+h(1-26))

and by Example 2.13 we have

Guo(f) = f o(psn) OUFD du

supp(f) U supp(h)
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AS(a)(pf'h))* = win [0, u(supp(f) U supp(h))), by the Hardy-Littlewood inequality (Bennet
and Sharpley 1988)

| (ppr) BUf +h(1 - 26)]) du
supp(f) U supp(h)

< faw(1 +2¢€) 0 ((f +h(1-26) (1+ 26)) d(1+ 2e).

In consequence , we get

=/
w(o —20)0(f + h(1 = 2€)|) du
1- 26( supp(f+h(1-2¢)) ( JrhQ-2 )) 4

—f w(psn)® (If +h(1—26)]) du) > 0.
supp(f) U supp(h)
Therefore
Qow,w(f + h(l - 26)) - §0w,(z)(f)
1— 2¢
> j w(prn)F (1 —2€) du+ P(1—2e), (2.12)
supp(f)

dlh(1-2€)|
where P(1 — 2¢) = fsupp(h)— supp(f) (U(,Df,h) 1-2¢ ap.

Analogously with( f + h(1 — 2¢)) instead of f,we get the inequality

(pw,@(f + h(l - 26)) - ¢w,®(f)
1-—2e

<

j w(0r4n1-20)F (1 —26) du+ Q(1 —2¢), (2.13)
supp(f+h(1-2€))nsupp(f)

glh(1-26)|
where Q(1 = 2€) = [ o supp(r) @(r+ha-20) 55— @

Let% < e < 0.Since @ is a convex function, we have @' (1 + 2¢)1 + 2e < (23(2(1 + 26)) for all
€= _71 In addition, the mean value Theorem implies that

|F(1 —2e)| < @' (max{|f + h(1 — 2€)|, IfIDIAl.

Therefore |w ((pf‘h)) F(1-— 2€)| < w(prn)0(20f] + |RD).
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Also,for all sufficiently small (1 — 2¢),e > %,from the proof of Theorem 2.11 we obtain ps ), <
I(+n-26))50 |@(0rsn(1-26)) F(1 = 26)| < w(psn)B(2(If | + |RD) for all sufficiently small

(1-2€),€> . Clearly,

f 0 (072)0 (2(f1 + hD))du < f © O2(If] + IR + 26) < oo,
supp(f)

0

then, from Theorem 2.11 and the Lebesgue Convergence Theorem we get

imy, [ alop)F-20du= | a(ps)0 UFDQ - 200g(Dhdn (214)
172620 Jsupp(f) supp(f)
and
lim w(o —2e))F(1 —2¢) du
1-2e-07 supp(f+h(1-2¢€))nsupp(f) ( frn@ 26))
= (o) AFDQ - 209 (PR (2.15)
supp(f)

If (supp(h) — supp(f) = 0,then P(1 —2¢) = 0and Q(1 — 2¢) = 0. So, (2.11) holds.

Otherwise, for all sufficiently small (1 — 2¢), € > %

P(|n(1 - 2¢)|)
0(prn) =75 = © (Onsuppny-suppcry ) @1 ADON sUPP(R) — supp(f).
Since
f @ (Ghsupp(h)—suppm) B < pup(h) <o, (2.16)
supp(h)—supp(f)
the Lebesgue Convergence Theorem implies that
lim P(1-2¢) = @, (0) w(prn)lhldu. (2.17)
12620 supp(h)—supp(f)
On the other hand ,
P(|h(1 - 2€)|)

lim  w(0pin-2¢)) = 0,(0) (ps ) hlonsupp(h) — supp(f)

1-2e-07t

1-—2e
and for all sufficiently small (1 — 2¢) ,e > % (2.9) implies

o(lh(1 - 26)])
(07 +n(1-20) =750 = @ (Onauppr-suppir) @URDON suPP(R) = supp(f). (2.18)

According to (2.16) and the Lebesgue Convergence Theorem ,

lim  Q(1—2e) = ¢ (0) w (psp) Rldp. (2.19)
1-2e-0 supp(h)—supp(f)
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Therefore, (2.14), ( 2.15), (2.17) and (2.19) imply (2.11) .
Now assume that 4 (supp(f)) = oo .Similarly, to the proof of (2.12) and(2.13) ,we can obtain

Poo(f + 71 —26)) = 9up(f) _
1-— 2¢ -

f w(psn)F(1—2€)du <
supp(f)

f w(prn)F(1—26)du+Q(1—26). (2.20)
supp(f+h(1-2¢€))nsupp(f)

Proceeding as before, we get (2.14) and (2.15).
If u(supp(h) — supp(f) =0,Q(1 —2¢) = 0and (2.11) is true.
In opposite case,

@(lh(1-2€)]) _
1-2¢

From (2.16),(2.18) and the Lebesgue Convergence Theorem,
lim; _,.,o+ Q(1 —2¢) = 0.

The proof is complete. In the next theorem, we obtain the one-sided Gateaux derivative of the

limy_ye 0+ W(Uf+h(1—26)) 0.

Lebesgue norm in terms of the one-sided Gateaux derivative of the functional ¢, 4.
Theorem2.15Letf,h € A,y ,f # 0 .Then

. f
Youo (||f||w,¢ h )

Y+ ( f f >
P2 \IIfllwe” I1fllwo

Proof. If h = 0, (2.21) is obvious. Now suppose that h # 0.

Vo O B) = (2.21)

Forall (1—-2¢),0< 1—-2¢e< W we denote
w,D
r+hG-201 \_( Ifl
®(||f+h(1—ze)||w,¢) Q(Ilfllw_@)

K(1—2¢) = and G(1 — 2¢) = ¢w’®< If +h(1-2¢)| )

1-2€ If+h(1-26)llw,p

First, we assume that u(supp(f)) <co and we consider

Q( |h(1-26)| )

_ If+h(1-20)l 40
P(1-2e) = fswp(h)—supp(f) w(pf'h) 1-2¢ dpand

(z)( lh(1-26)| >
If+h(1=26)l¢,0
du

et -209= | (0 sn1-20) — L

supp(h)—supp(f)

Proceeding analogously to the proof of Theorem 2.14, we can obtain
G(1—-2¢)—-G(0) -
1-—2¢ o

J w (prn)K(1—26)du+ P(1—2€) <
supp(f)
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f @ (07 4+n(1-26))K(1 — 2€)dp + Q(1 — 26), (2.22)
supp(f+h(1-2€))nsupp(f)

Let0 < 1 —2¢ < min{1,M}.
21l

Sl w,0
1-26)l gl fllw,p

. If+h(-20)] __If] -
to the expressmn”f+h(1_26)”w T and applying

Adding and subtracting||f+h(

the triangular inequality we obtain

f +h-20]  If]
If + (- 20wo  fllwg

2(1—26)M
< ( €)
1f 1l o0

(1f1+ [RD),

whereM =1+ ::;::‘*"o.ln consequence, the Main Value Theorem implies that
w,®
' |f+h(1-26€)| If1
K(1— 26)] < ? (max{llf+h(1—26)llw,o' ||f||w.o}> f+h(1=29  Ifl
- 1-2¢ If + h(1 =26)llwe lIfllwe

(Ilfllw(lfl”hl))llfllw (fl+IrD <0 (Ilfllw (|f|+|h|))

From the Lebesgue Convergence Theorem, we can show that

lim w (prp)K(1 — 2€)du
1-2620% Jsupp(s) (by2)
= lim w (o, _20))K(1 = 2€)du
1-2e-0% supp(F+h(1-26))nsupp() (f+h(1 26))
supp) 7 \IIfllwg F 1w
|f]
— iz Vil (B | du (2.23)
WfNZ g e
and
|h
lim P(l —2¢€) = lirn Q(1—2¢) =0,(0) 2.24
1-ze-07 —2e-07 * supp(h)—supp(f) (pfh) ”f”w ( )

Thus, from (2.22) -(2.24), we have
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G(1—-2e)—-G(0)

1—zlen—1>0+ 1-—2¢
— Id
= 0,(0) w(prn) jo—du
supp(h)—supp(f) ”f”w,(z)
|f ) (1-2e)g(f)h
+ o'
fsuppm“’ (pra) (ufnm T
——lle Vit o 1) | du. (2.25)
NFIE, g " P

Since @ ¢ (ﬁ) = 1forany g € 4, ¢ — {0}(see Kaminska 1990) we have
G(1—2¢) =1

for0 <1-2e< %.Therefore, from (2.25) and Theorem 2.14, we get (2.21) .
w,®

The case u(supp(f)) = oo follows in a similar way without using P(1 — 2¢) and after proving
that
lim; _,.,o+ Q(1 —2€) = 0.

3. characterization of smooth points for the Luxemburg norm

We let X be a Banach space and let T: X —» R* be a convex functional. The following example
shows that the set of smooth points of the functional T, in general, is not equal to the set of smooth
points of the Minkowski functional of{ f € X:T(f) < 1}(Levis and Cuenya, 2007).

Example 3.1 In a Hilbert space X define the continuous convex function

(A i N> 1,
T(f)_{ 1 if |Ifll <1

It is not Gateaux differentiable at any point f of norm |, but the Minkowski functional of { f €
X:T(f) < 1}. (which is the closed unit ball) is just thenorm, which is infinitely Gateaux

differentiable everywhere except at the origin. We consider the sets
EP = {f € Aup —{0}:u{lfl =1—2€} =0 foranye > %}and
A*?:= 2P n{f € Ayp:u{f =0} =0 onpus(0) = }.
In (Levis and Cuenya 2004), we have proved that f € A, 4is asmooth point of ¢, 4 if f €
EXP(f € A*?)when @', (0) = 0(@%(0) > 0).
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It is well-known that if X is a Banach space and T: X — R is a convex functional then forall f, h €
X, y7 (f, h)andy; (f, h)always exist and the equality
v#(f,h) = —y7(f,—h) holds (Pinkus, 1989), we showed a relation between the one-sided

Gateaux derivative for the functional ¢, 4 and the one-sided Gateaux derivative for the Luxemburg

f

is a smooth
[1£ 1,0

norm. Consequently, f is a smooth point of the Luxemburg norm if and only if

point for ¢, ¢ .The next theorm follows immediately.

Theorem 3.2 The set of smooth points for the Luxemburg norm is

£2P(A9)ifg’, (0) = 0(@%(0) > 0).

Remark 3.3 It is well-known that £2? and A®? are dense sets in the 4,4 because the points of

Gateaux- differentiability of the norm in a separable space always from a dense set (Phelps, 1989).

4.Characterization of best approximants
We characterize the set of best approximants from convex closed sets using the one-sided Gateaux

derivative. Moreover, we establish a relation between the best ¢, 4 -approximants and best
approximants from a convex set. Let f,h € A, ¢.We denote by

Ay = {o:supp(f) = supp(f*):oism.p.t.and |f| = f* o 0o,u —a.e.onsupp(f)}

and

Trn = —04(0) o (pgn) Rldu. (4.1)
supp(h)—-supp(f)

In (4.1), we write w() = 0.

Theorem4.1 Let K c A, 4 be aconvex closed set, let f,h € A,y — K

and let h* € K. Then the following statements are equivalent:

(@ h ePR,, ,(f.K);

) Soupnrony @(Or-nne—n)® (f = DA = 26)g (f = )k = h)dp >
T¢_pe pe—pforall h € K;

© 30 Luppgyony @ @F1f = WD =209 = KO = ki 2

Tf—h',h'—h forallh € K.

In addition, if Ty_p- -_p=o,these statements imply

D@ue(f —h) < [ w1+ 268 ((f —h)* (1 +26))(f — h)*(1 + 2€)d(1 + 2€)
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forall h € K.
Proof. The implication (b) = (c) is obvious.

(a)e(b). This is an immediate consequence of Theorem 2.14 and (Pinkus 1989, Theorem 1.6),

because this theorem still holds if we replace the norm||-|| by the functionalg,, ¢.
(c)=(b). Let h€ K and 0 € A;_- .Taking o,f — h* and h* — h instead of psp, f and h
respectively in (2.12) or (2.20) we have

[ @0 - KDA - 2090 = K = Wt = Ty e <
supp(f—h*)

Yo o(f —h)(h" —h).
By hypothesis and Theorem 2.14, we get

o< sw | © @0 (f — KD = 26)g(f — k)" = B)dpt — Tr—pepeon
0€Af_p* Jsupp(f-h*)

< YJw‘w(f —h',h* —h)
=f @(pr—npe—n)® (If = h* DA = 26)g(f — h*)(h* = R)dp — Ty_p+ .
supp(f—h*)

(b)=>(d) .AssumeTs_p: p-—p, = 0 and let h € K .Since for all € > _71
(14 2¢) < @'(1+ 2¢€)1+ 2¢, then by hypothesis and the Hardy-Littlewood inequality we

have

%wq—hosj © (05— pe—n)0'(If = R*DIf — h|du

supp(f-h*)
<[ (o) Uf = DA = 2090 = R = Wi
supp(f—-h*)
According to (Bennet and Sharpley 1988, Proposition7.2)
W(pronn—n)® (f =) ~ w®' ((f — "))

and w®'((f — h*)*)is anon-increasing function. So,

Poo(f —h) < f w®'((f —h)*(1+26)) (f —h)*(1 + 26)d(1 + 2¢).
0
The following example shows, that the implication (d)=(a) of Theorem 4.1 is not true in general.

Example 4.2 Let @ = 1. We consider
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-1
(1+2€) _ .
e 2(1 + e)if <e<0,
¢(1+2¢) = ( ) 2

e—1
(e —2)(1 4 2€)e—z if € > 0.
K=1{he Aypihis constant}and f = X0 1)
'2

It is easy to see that

Pue(f) = (e —2) [Zw(1+2€)d(1 + 2e).
On the other hand, for h € K and _71 > €e> _Tl

we have(f — h)*(1 + 2¢) = % .Thus, forall h € K,

[ w(1+26)¢" (f*(1+26)(f — B (1 + 2€)d(1 + 2¢€) > %lféwu +26)d(1 +

2¢€).Consequently, (d) is true forh® = 0. However, Py, s (f,K) = {%}

Nevertheless, we show in the next theorem that (d)=(a) holds when
d(1+2¢e) = (1 + 2e)re,
Theorem 4.3 Let K < L, 1+¢) be a convex closed set, let 0 < € < oo,

let f € Liw1+e) — K and let h* € K.Then, the following statements are equivalent:
@ R EP oK)

® =R < o +26) ((f =) A+20) (F - A+ 20)d(1 +
2¢)forall h € K.

Proof. If e = 0, this is obvious. Assume that 0 < € < o . (a)=(b) is an immediate consequence

of Theorem 4.1.

(b)—( a) .Let (1 +¢€) and (1 — €) be conjugate numbers and let h € K.From hypothesis and

Holder inequality, we get

(w,1+€) =

If — |89 | < Jawu +26) ((f = h*)* (1 +26))(f = h)*(1 + 2€)d(1 + 2¢)
0

= jawm +20)7= ((f =h) (1+26) w(1+ 26T (f — h)*(1 + 2€)d(1
0

+26) < If = ' l{w1+0llf — hllw1+e.
So, the proof is complete. Next, we establish a relation between the best ¢, -approximants and
best approximants from a convex set K.

Theorem4.4 Letf,€ A,gand K c A, 4 be convex set such that
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. . .e h' f K
8 = Ejj,,(f, K) > 0.Then,h* € Py, (f, K)ifand only if =€ P, | (E’E)'

Proof. It follows immediately from (Pinkus1989, Theorem 1.6 and Theorem 2.15).
Remark 4.5 Theorem 4.4 is known for arbitrary sets K in modular space (see Kilmer and
Kozlowski 1990).

Henceforth, we consider & < o,K := {g € A, 4: g is constant}and
f € Ayp.Clearly,P, (f, k)is a nonempty and compact interval. We denote
f=minP, (f, k)andf = max Py, (f k).
As a direct consequence of (Pinkus,1989, Theorem 1.6) we have that c € P, ,(f, k) if and only
if

Youo(f —¢, 1) = 0andyg (c—f,1)=0. (4.2)
The next characterization of best constant ¢, 4 -approximants of f follows from (4.2) and

Theorem 2.14.
Theorem 4.6 Let f,€ Ay, . Then c € B,  (f, k) if and only if the following statements hold:

@J;0e @ (r-c1)0'(f = OV = [,_ 0 (pr—c1)®'(c — Fdu

and

O) o @ (Pe-pa)@'(c = ldu 2 [, @ (pe-r1)0'(f — .

We write, @'(0) := @/, (0) .According to Theorem 4.4 and 4.6, we obtain the following

characterization of best constant approximants:

Corollary 4.7 Let f € A,1+¢) — K-Then ¢ € Py ,(f, k)if and only if the following statements
hold:

(a)ffzcw(pf-c,l)W( = )dﬂsz<cw(pf-c,1)¢’< i )duand

If—cllw,e lle=Fllw,o
I c—f I f-c
(b)ffsc w (pc—f,l)@ (”C_f“w,(b> d‘Ll = ff>C w (pC—f,l)® (”f_C”w_Q)) d.u

Now our purpose is to give away to construct the best ¢, g-approximants f and f.

We begin with three lemmas.

Lemma 4.8 If ¢ < dthenforall 0 < x < a we have

@ty (F) = ) < pr_a(FOO) — D if f(0) > d

and
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O)ps—a(d — F(0)) < pp_c(c — fFR))if f(x) <c.
Proof. (a) Suppose f(x) = d, clearly,
py:2d — f(x) < f) < f)D < uly:2c — f(x) < f() < FOD).

Therefore,

ply: If ) —dl < f(x) —db) <u{y: If ) —cl < f(x) = c})
and consequently (a) holds.

(b). Now suppose that (x) < c . Clearly
py:lf —clsc—fD sul{y:If ) —dl <d - f(0))
and thus (b) is true.
Lemma 4.9 If ¢ < d then for 0 < x < a we have:
(@) pr-c1(x) < pr_g1(x)if f(x) = dand
(00741 (x) < prca () if F(x) <c.
Proof. (a). Suppose f( x) > d. Since f( x) > c, from Lemma 4.8 we get
Pr-a1(x) = pra(f () —d) + u({y: f(¥) = f(x)and y < x})
2 pr-c(f() =) + u{y: f(y) = f(and y < x}) = pr_c1 (%)
Now suppose that f(x) = d.
As

tr—c(d —c) < pp_q(0) and x € supp(f — c),then pr_. 1 (x)
= pr-c(d =) +u({y: f(y) =dand y < x})
< pr-a(0) + u({y: f(y) =dandy < x}) = ps_q1(%).
(b). Assume f(x) < c. Since
r-a(d = f)) +uy: fFO) —d =d ~ fON < pr_c(c — (),
we haveps_q1(x) < pr_c(c = F()) + u{y: f) = f(x) andy < x 1) < p_c1 (%).
Lemma4.10 Let f € Ay 14¢) - Ifc < d,then
@Ye,,(f —d, 1) <vg,,(f — ¢, Dand
0 v, —f D)<y, d-f 1.
Proof. (a) We will show that
Youof =& 1D <vg,,(f —c Difc < d.
We define
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<u

P(w) = ff © (pr—u1)?' (f = w)dp and Q(u) = ]f © (pr-u1)®’ (u — fdp.

Clearly
Youof —w 1) =P) — Qw).
It will be sufficient to prove that P is a non-increasing function and Q is a non-decreasing function.

Since w is non-increasing @ is a non-decreasing and

:f)zd}c{y:fly) >c},

then from Lemma 4.9 (a) we have

P(d) < f w(pf_c,l) @' (f —c)du < P(c).

f>c

Similarly, from Lemma 4.9 (b),

0(0) < f 0(pr-a1)9'(d - Pdp = Q(d).

f<d
(b). Replacing in (a),f, c and d by - f, —d and—c respectively, we obtain (b).
Theorem 4.11 Let f € A, 14¢). Then
f= max{c:yg, ,(f — ¢, 1) = 0Jandf = min{c:yg, (c - f,1) = 0}.
Proof. Suppose that there exists ¢, ¢ > f, such that
Vouof —¢, 1) 2 0. (4.3)

By Lemma 4.10,

Vauwo—f D 2v3,,(f~f,1) 20 (44)
Then, (4.2)-(4.4) imply that c € B, ,(f, k), a contradiction.Thus,
f= max{c:ygwm(f —¢,1) >0}

Similarly, we can see thatf = min{c:y,,  (c — f,1) = 0} (Levis and Cuenya 2007).
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Conclusion

By Letting A,, ¢ be the Orlicz-Lorentz space. We study Gateaux differentiability of the functional
Puo(f) = f0°° @(f*)wand of the Luxemburg norm. More precisely, we obtain the one-sided
Gateaux derivatives in both cases and we characterize those points where the Gateaux derivative
of norm exists. We give a characterization of best ¢, s-approximants from convex closed subsets
and we establish a relation between bestgp,, s-approximants and best approximants from a convex
set. A characterization of best constant

@ g-approximants and the algorithm to construct the best constant for maximum and minimum

@ g-approximants are given.
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