

Nile Valley University Publications Nile Journal for Sciences and Engineering (NJSE) (ISSN: 1858 – 7059)

Volume 01, NO. 02, 2024 https://www.nilevalley.edu.sd

A sharp Trudinger-Moser Type Inequality for Unbounded Domains and Higher Order Derivatives

Mahgoub Elawad Mohammed Ahmed

Department of Mathematics, Faculty of Teachers, Nile Valley University, Atbara, Sudan Corresponding Author: 0111455657

Abstract

The Trudinger- Moser inequality states that for functions $u \in H^{1,n}_o(\Omega)$, of bounded domain Ω with $\int |\nabla u| dx \le 1$ one has $\lim_{k \to +\infty} \int_{B_1} (e^{\beta u_k^{\frac{n}{n-1}}} - 1) dx \le c |\Omega|$, with c independent of u. It is shown that for n = 2 the bound $c |\Omega|$ may be replaced by a uniform constant d independent of Ω if the Drichlet norm is replaced by the Sobolev norm. In this paper the results for n > 2 have been showed with a lower bound and gradient estimate.

Keywords: Truding-Moser inequality, blow-up analysis, best constant, unbounded domain, Mathematics subject classification.

متباينة ترودنقر. موزار الحادة للمجالات غير المحدودة وللمشتقات عالية المستوى

محجوب العوض محمد أحمد

قسم الرباضيات، كلية المعلمين، جامعة وادى النيل، عطيرة، السودان

المؤلف:

مُسْتَخْلص

 $\int \! \left|
abla \, u
ight| dx \leq 1$ مع التكامل $dx \leq 1$ مع التكامل Ω (وهو مجال محدود) والتي مجالها $u \in H^{1,n}_o(\Omega)$, الدوال للدوال الدوال أولاني مجالها $u \in H^{1,n}_o(\Omega)$

 $\lim_{k\to +\infty}\int_{B_1} \left(e^{\beta u_k^{\frac{n}{n-1}}}-1\right)\,dx \leq c\,\left|\Omega\right|$ يمكن استبداله بالثابت lim $\int_{B_1} \left(e^{\beta u_k^{\frac{n}{n-1}}}-1\right)\,dx \leq c\,\left|\Omega\right|$ يمكن استبداله بالثابت lim δ a size δ a size

كلمات مفتاحية:متباينة ترودنقر . موزار ، تحليل الانشطار ، أفضل ثابت ، المجال غير المحدود ، تصنيف المواضيع الرباضية .

Introduction

Let $H^{1,p}_o(\Omega)$, $\Omega \subseteq \mathbb{R}^n$, be the usual Sobolev space. *i.e.* the completion of $C_0^\infty(\Omega)$ with the norm

$$||u||_{H^{1,p}(\Omega)} = \left(\int_{\Omega} \left(|\nabla u|^p + |u|^p\right) dx\right)^{\frac{1}{p}}.$$

It is well-known that

$$H_o^{1,p}(\Omega) \subset L^{\frac{pn}{n-p}}(\Omega)$$
 if $1 \le p < n$

$$H_o^{1,p}(\Omega) \subset L^{\infty}(\Omega)$$
 if $n < p$

The case p = n is the limit case of these embeddings and it is known that

$$H_{a}^{1,p}(\Omega) \subset L^{q}(\Omega)$$
 for $n \leq q < +\infty$

When Ω is a bounded domain, we usually use the Drichlet norm $\|u\|_{D}$

 $\left(\left|\nabla u\right|^n dx\right)^{\frac{1}{n}}$ in place of $\left\|\cdot\right\|_{H^{1,n}}$. In this case we have the famous Trudinger-Moser inequality (see [11], [4], [9]) for the limit case p=n which states that

$$\sup_{\|u\|_{\Omega} \le 1} \int_{\Omega} \left(e^{\alpha |u|^{\frac{n}{n-1}}} - 1 \right) dx = c(\Omega, \infty) \begin{cases} <+\infty & when & \infty \le \infty_n \\ =+\infty & when & \infty > \infty_n \end{cases}$$
 (1)

where $\infty = n \omega_{n-1}^{\frac{1}{n-1}}$, and ω_{n-1} is the measure of unit sphere in \mathbb{R}^n . The Trudinger-Moser result has been extended to sphere of higher order and Sobolev spaces over compact fields (see [7], [13]). Moreover, for any bounded Ω , the constant $c(\Omega, \infty)$ can be attained. For the attainability, we refer to [8], [5], [13] and (Li, 2001).

Another interesting extension of (1) is to construct Trudinger-Moser type inequalities on unbounded domains. When n = 2, this has been done in (Ruf, 2005). On the other hand, for unbounded domain in \mathbb{R}^n .

Let

$$\Phi(t) = e^t - \sum_{j=1}^{n-2} \frac{t^i}{j|}$$

The result in (Li and Ruf, 2000) says that

Theorem C. For any $\infty \in (0, \infty_n)$ there is a constant $C(\infty)$ such that

$$\int_{R^n} \Phi \left(\infty \left(\frac{|u|}{\|\nabla u\|_{L^n(R^n)}} \right)^{\frac{n}{n-1}} \right) dx \le C(\infty) \frac{\|u\|_{L^n(R^n)}^n}{\|\nabla u\|_{L^n(R^n)}^n}, \quad for \quad u \in H^{1,n}(R^n) \setminus \{0\}.$$
 (2)

We shall discuss the critical case $\propto = \propto_n$. More precisely, we prove the following:

Theorem (1.1) (Adachi and Tanaka, 1999). There exists a constant d > 1, such that, for any domain $\Omega \subset \mathbb{R}^n$,

$$\sup_{u \in H^{1,n}(\Omega), \|u\|_{H^{1,n}(\Omega)}} \int_{\Omega} \Phi\left(\infty_n \left| u \right|^{\frac{n}{n-1}}\right) dx \le d. \tag{3}$$

The inequality is sharp: for any $\infty > \infty_n$, the supremum is $+\infty$.

We set

$$S = \sup_{u \in H^{1,n}(R^n) \|u\|_{H^{1,n}(R^n)}} \int_{R^n} \Phi\left(\infty_n |u|^{\frac{n}{n-1}}\right) dx.$$

Further, we will prove:

Theorem (1.2) (**Ruf**, 2005). S is attained. In other words, we can find a function $u \in H^{1,n}(\mathbb{R}^n)$, WITH $||u||_{H^{1,n}(\mathbb{R}^n)} = 1$ such that

$$S = \int_{\mathbb{R}^n} \Phi\left(\infty_n \left| u \right|^{\frac{n}{n-1}}\right) dx.$$

The second part of Theorem (1.2) is trivial. Given any fixed $\infty > \infty_n$, we take $\beta \in (\infty_n, \infty)$. By (1) we can find a positive sequence $\{u_k\}$ in

$$\left\{ u \in H_0^{1,n}(B_1) : \int_{B_1} |\nabla u|^n dx = 1 \right\},$$

such that

$$\lim_{k\to+\infty}\int_{B_1}e^{\beta u_k^{\frac{n}{n-1}}}=+\infty.$$

By Lion's Lemma, we get $u_k \to 0$. Then by compact embedding theorem, we may assume $\|u_k\|_{L^p(B_1)} \to 0$ for any p > 1. Then, $\int_{R^n} \left(|\nabla u_k|^n + |u_k|^n \right) dx \to 1$, and

$$\infty \left(\frac{u_k}{\left\| u_k \right\|_{H^{1,n}}} \right)^{\frac{n}{n-1}} > \beta u_k^{\frac{n}{n-1}}.$$

When k is sufficiently large. So, we get

$$\lim_{k \to +\infty} \int_{R^n} \Phi(\infty \left(\frac{u_k}{\|u_k\|_{H^{1,n}}} \right)^{\frac{n}{n-1}}) dx \ge \lim_{k \to +\infty} \int_{B_1} \left(e^{\beta u_k^{\frac{n}{n-1}}} - 1 \right) dx = +\infty.$$

The first part of Theorem (1.1) and Theorem (1.2) will be proved by blow up analysis. We will use the ideas from [14] and (Li, 2005). However, in the unbounded case we do not obtain the strong convergence of u_k in $L^n(\mathbb{R}^n)$, and so we have more techniques.

Concretely we will find positive and symmetric functions $u_k \in H^{1,n}(B_{R_k})$ which satisfy

$$\int_{B_{R_k}} \left(|\nabla u_k|^n + |u_k|^n \right) dx \to 1$$

and

$$\int_{B_{R_k}} \Phi \left(\beta_k u_k^{\frac{n}{n-1}} \right) dx = \sup_{\int_{B_{R_k}} \left(|\nabla v|^n + |v|^n \right) = 1, v \in H_0^{1,n}(B_{R_k})} \int_{B_{R_k}} \Phi \left(\beta_k |v|^{\frac{n}{n-1}} \right) dx.$$

Here, β_k is an increasing sequence tending to ∞_n , and R_k is an increasing sequence tending to $+\infty$.

Further, u_k satisfies the following equation

$$-div|\nabla u_k|^{n-2}\nabla u_k + u_k^{n-1} = \frac{u_k^{\frac{1}{n-1}}\Phi'(\beta_k u_k^{\frac{n}{n-2}})}{\lambda_k},$$

where λ_k is Lagrange multiplier.

Then, there are two possibilities. If $c_k = \max u_k$ is bounded from above, then it is easy to see that

$$\lim_{k \to +\infty} \int_{\mathbb{R}^n} \left(\Phi \left(\beta_k u_k^{\frac{n}{n-2}} \right) - \frac{\beta_k^{n-1} u_k^n}{(n-1)!} \right) dx = \int_{\mathbb{R}^n} \left(\Phi \left(\infty_k u^{\frac{n}{n-2}} \right) - \frac{\alpha_k^{n-1} u^n}{(n-1)!} \right) dx,$$

where u is the weak limit of $c_k = \max u_k$. It then follows that either $\int_{\mathcal{P}} \Phi\left(\beta_k u_k^{\frac{n}{n-1}}\right) dx$ converges to

$$\int_{R^n} \Phi\left(\infty_n u^{\frac{n}{n-1}} \right) dx \text{ or } S \leq \frac{\infty_n^{n-1}}{(n-1)!}.$$

If c_k is not bounded, the key point of the proof is to show that

$$\frac{n}{n-1}\beta_k c_k^{\frac{1}{n-1}} \left(u_k(r_k x) - c_k \right) \to -n \log \left(1 + c_n^{\frac{n}{n-1}} \right),$$

locally for a suitably chosen sequence r_k (and with $c_n = \left(\frac{\omega_{n-1}}{n}\right)^{\frac{1}{n-1}}$), and that

$$c_k^{\frac{1}{n-1}}u_k \to G,$$

On any $\Omega \subset \mathbb{R}^n \setminus \{0\}$, where *G* is some Green function.

In section (5.2), we will construct a function sequence u_{ϵ} such that

$$\int_{R^n} \Phi\left(\infty_n u^{\frac{n}{n-1}} \right) dx > \frac{\omega_{n-1}}{n} e^{\alpha_n A + 1 + 1/2 + \dots + 1/(n-1)}$$

when \in is sufficiently small. And also, we construct, for n>2, a function sequence u_{\in} such that for \in sufficiently small

$$\int_{\mathbb{R}^n} \Phi\left(\infty_n u^{\frac{n}{n-1}}\right) dx > \frac{\infty_n^{n-1}}{(n-1)!}.$$

Thus, together with Ruff's result of attainability in [14] for the case n = 2, we will get Theorem (1.2).

Definition (1.3) (Li and Ruf, 2000). To define the maximizing sequence, let $\{R_k\}$ be an increasing sequence which diverges to infinity, and $\{B_k\}$ an increasing sequence which converges to α_n . By compactness, we can find positive functions $u \in H^{1,n}(B_{R_k})$ with $\int_{B_{R_k}} \left(|\nabla u_k|^n + |u_k|^n \right) dx = 1$ such that

$$\int_{B_{R_k}} \Phi \left(\beta_k u_k^{\frac{n}{n-1}} \right) dx = \sup_{\int_{B_{R_k}} \left(|\nabla v|^n + |v|^n \right) = 1, v \in H_0^{1,n}(B_{R_k})} \int_{B_{R_k}} \Phi \left(\beta_k |v|^{\frac{n}{n-1}} \right) dx.$$

Moreover, we may assume $\int_{R^n} \Phi\left(\beta_k u_k^{\frac{n}{n-1}}\right) dx = \int_{B_{R_k}} \Phi\left(\beta_k u_k^{\frac{n}{n-1}}\right) dx$ is increasing.

Lemma (1.4) (Li and Ruf, 2000). Let u_k as above. Then

- (a) u_k is a maximizing sequence for S;
- (b) u_k may be chosen to be radially symmetric and decreasing.

Proof. (a) Let η be a cut-off function which is 1 on B_1 and 0 on $R^n \setminus B_2$. Then given any $\varphi \in H^{1,n}(R^n)$ with $\int_{R^n} (|\nabla \varphi|^n + |\varphi|^n) dx = 1$, we have

$$\tau^{n}(L) := \int_{\mathbb{R}^{n}} \left(\left| \nabla \eta \left(\frac{x}{L} \right) \varphi \right|^{n} + \left| \eta \left(\frac{x}{L} \right) \varphi \right|^{2} \right) dx \to 1, \quad as \quad L \to +\infty.$$

Hence, for a fixed L and $R_k > 2L$

$$\int_{B_L} \Phi\left(\beta_k \mid \frac{\varphi}{\tau(L)} \mid^{\frac{n}{n-1}}\right) dx \leq \int_{B_{2L}} \Phi\left(\beta_k \mid \frac{\eta(\frac{x}{L})\varphi}{\tau(L)} \mid^{\frac{n}{n-1}}\right) dx \leq \int_{B_{R_k}} \Phi\left(\beta_k u_k^{\frac{n}{n-1}}\right) dx .$$

By the Levi Lemma, we then have

$$\int_{B_L} \Phi\left(\infty_n \left| \frac{\varphi}{\tau(L)} \right|^{\frac{n}{n-1}} \right) dx \le \lim_{k \to +\infty} \int_{R^n} \Phi\left(\beta_k u_k^{\frac{n}{n-1}} \right) dx .$$

Then, letting $L \to +\infty$, we get

$$\int_{R^n} \Phi\left(\infty_n |\varphi|^{\frac{n}{n-1}}\right) dx \le \lim_{k \to +\infty} \int_{R^n} \Phi\left(\beta_k u_k^{\frac{n}{n-1}}\right) dx.$$

Hence, we get

$$\lim_{k\to+\infty}\int_{R^n}\Phi\left(\beta_k u_k^{\frac{n}{n-1}}\right)dx = \sup_{\int_{R^n}\left(\left|\nabla v\right|^n+\left|v\right|^n\right)=1, v\in H_0^{1,n}\left(B_{R_k}\right)}\int_{R^n}\Phi\left(\infty_n\left|v\right|^{\frac{n}{n-1}}\right)dx.$$

(b) Let u_k^* be the radial rearrangement of u_k , then we have

$$\tau_{k}^{n} := \int_{B_{R_{k}}} \left(\left| \nabla u_{k}^{*} \right|^{n} + u_{k}^{*n} \right) dx \le \int_{B_{R_{k}}} \left(\left| \nabla u_{k} \right|^{n} + u_{k}^{n} \right) dx = 1.$$

It is well-known that $\tau_k = 1$ if and only if u_k is radial. Since

$$\int_{B_{R_k}} \Phi\left(\beta_k u_k^{*\frac{n}{n-1}}\right) dx = \int_{B_{R_k}} \Phi\left(\beta_k u_k^{\frac{n}{n-1}}\right) dx ,$$

we have

$$\int_{B_{R_k}} \Phi \left(\beta_k \left(\frac{u_k^*}{\tau_k} \right)^{\frac{n}{n-1}} \right) dx \ge \int_{B_{R_k}} \Phi \left(\beta_k u_k^{\frac{n}{n-1}} \right) dx ,$$

And "=" holds if and only if $\tau_k = 1$. Hence $\tau_k = 1$ and

$$\int_{B_{R_k}} \Phi \Big(\beta_k u_k^{*\frac{n}{n-1}} \Big) dx = \sup_{\left[\int_{\mathbb{R}^n} \left(|\nabla v|^n + |v|^n \right) - 1, v \in H_0^{1,n}(B_{R_k}) \right]} \int_{B_{R_k}} \Phi \Big(\int_{\mathbb{R}^n} \left| v \right|^{\frac{n}{n-1}} dx.$$

So, we can assume $u_k = u_k(|x|)$, and $u_k(r)$ is decreasing

Assume now $u_k = u$. Then, to prove Theorem (1.1) and Theorem (1.2), we only need to show that

$$\lim_{k\to+\infty}\int_{R^n}\Phi\left(\beta_k u_k^{\frac{n}{n-1}}\right)dx = \int_{R^n}\Phi\left(\infty_n u_k^{\frac{n}{n-1}}\right)dx.$$

Definition (1.5) (Li and Ruf, 2000). By the definition of u_k , we have the equation

$$-div\left|\nabla u_{k}\right|^{n-2}\nabla u_{k}+u_{k}^{n-1}=\frac{u_{k}^{\frac{1}{n-1}}\Phi'\left(\beta_{k}u_{k}^{\frac{n}{n-1}}\right)}{\lambda_{k}},\qquad(4)$$

where λ_k is the constant satisfying

$$\lambda_k = \int_{B_{R_k}} u_k^{\frac{n}{n-2}} \Phi\left(\beta_k u_k^{\frac{n}{n-1}}\right) dx.$$

First, we need the following:

Lemma (1.6) (Li and Ruf, 2000). inf $\lambda_k > 0$.

Proof. Assume $\lambda_k \to 0$. Then

$$\int_{R^n} u_k^n dx \le C \int_{R^n} u_k^{\frac{n}{n-2}} \Phi' \left(\beta_k u_k^{\frac{n}{n-1}} \right) dx \le C \lambda_k \to 0.$$

Since $u_k(|x|)$ is decreasing, we have $u_k^n(L)|B_L| \le \int_{B_L} u_k^n \le 1$, and then

$$u_k(L) \le \frac{n}{\omega_n L^n} \ . \tag{5}$$

set $\in = \frac{n}{\omega_n L^n}$. Then $u_k(x) \le \in$ for any $x \notin B_L$, and hence, we have, using the form of Φ , that

$$\lambda_k = \int_{R^n \setminus B_L} \Phi \left(\beta_k u_k^{\frac{n}{n-1}} \right) dx \le C \int_{R^n \setminus B_L} u_k^n dx \le C \lambda_k \to 0.$$

And on B_L , since $u_k \to 0$ in $L^q(B_L)$ for any q > 1, we have by Lebesgue

$$\lim_{k \to +\infty} \int_{B_L} \Phi \left(\beta_k u_k^{\frac{n}{n-1}} \right) dx \qquad \leq \lim_{k \to +\infty} \left[\int_{B_L} C u_k^{\frac{n}{n-1}} \Phi' \left(\beta_k u_k^{\frac{n}{n-1}} \right) dx + \int_{\{x \in B_L : u_k(x) \leq 1\}} \Phi \left(\beta_k u_k^{\frac{n}{n-1}} \right) dx \right]$$

$$\leq \lim_{k \to +\infty} C \lambda_k + \int_{B_L} \Phi(0) dx = 0$$

This is impossible.

Results(1.7) (Shawgy and Mahgoub, 2011): (i) Definition (1.5) and results (2.8) implies that if we set $v_g = x$ and $\varphi(z) = z_e$ then we have

$$\Phi\left(B_{k}\left|u_{k}\right|^{\frac{n}{n-1}}\right) = e^{p_{k}\left|u_{k}\right|^{\frac{n}{n-1}}}.$$

(ii) Theorem (1.2) shows that

$$\propto \left(\frac{u_k}{\left\|u_k\right\|_{H^{1,n}}}\right)^{\frac{n}{n-1}} > \beta u_k^{\frac{n}{n-1}}.$$

$$\|u_k\|^{\frac{n}{n-1}} < \frac{\alpha^{\frac{n}{n-1}}}{\beta}$$
 or $\|u_k\| < \frac{\alpha}{\beta^{\frac{n}{n-1}}}$.

If
$$u_k \to u \in H^{1,n}(\mathbb{R}^n)$$
 with $||u||_{H^{1,n}(\mathbb{R}^n)} = 1$ then $\beta < \alpha^{n/n-1}$.

(iii) If $c_k = Max u_k$, where u is the weak limit of $c_k = Max u_k$, it follows that

$$S \leq \frac{\beta}{(n-1)!} \|u_k\|, n > 1.$$

We denote $c_k = \max u_k = u_k(0)$. Then we have

Lemma (1.8) (Li and Ruf, 2000). If $\sup_{k} c_k < +\infty$,

- (i) Theorem (5.1.1) holds;
- (ii) if S is not attained, then

$$S \leq \frac{\infty_n^{n-1}}{(n-1)!}.$$

Proof. If $\sup_k c_k < +\infty$, then $u_k \to u$ in $C^1_{10c}(\mathbb{R}^n)$. By (5), we are able to find L s.t $u_k(x) \le \epsilon$ for

 $x \notin B_L$. Then

$$\int_{R^n \setminus B_L} \left(\Phi \left(\beta_k u_k^{\frac{n}{n-1}} \right) - \frac{B_k^{n-1} u_k^n}{(n-1)!} \right) dx \le C \int_{R^n \setminus B_L} u_k^n dx \le C \in \frac{n^2}{n-1}^{-n} \int_{R^n} u_k^n dx \le C \in \frac{n^2}{n-1}^{-n} .$$

Letting $\in \to 0$, we get

$$\int_{R^n\setminus B_L} \left(\Phi\left(\beta_k u_k^{\frac{n}{n-1}}\right) - \frac{B_k^{n-1} u_k^n}{(n-1)!}\right) dx = \int_{R^n\setminus B_L} \left(\Phi\left(\infty_n u^{\frac{n}{n-1}}\right) - \frac{\infty_n^{n-1} u^n}{(n-1)!}\right) dx.$$

Hence

$$\lim_{k \to +\infty} \int_{\mathbb{R}^n \setminus B_L} \Phi\left(\beta_k u_k^{\frac{n}{n-1}}\right) dx = \int_{\mathbb{R}^n} \Phi\left(\infty_n u_k^{\frac{n}{n-1}}\right) dx + \frac{\infty_n^{n-1}}{(n-1)!} \lim_{k \to +\infty} \int_{\mathbb{R}^n} \left(u_k^n - u^n\right) dx. \tag{6}$$

When u = 0, we can denote from (6) that

$$S \leq \frac{\infty_n^{n-1}}{(n-1)!}.$$

Now, we assume $u \neq 0$. Set

$$\tau^n = \lim_{k \to +\infty} \frac{\int_{\mathbb{R}^n} u_k^n dx}{\int_{\mathbb{R}^n} u^n dx}.$$

By the Levi Lemma, we have $\tau \ge 1$.

Let $\overline{u} = u(\frac{x}{\tau})$. Then, we have

$$\int_{\mathbb{R}^n} \left| \nabla \overline{u} \right|^n dx = \int_{\mathbb{R}^n} \left| \nabla u \right|^n dx \le \lim_{k \to +\infty} \int_{\mathbb{R}^n} \left| \nabla u_k \right|^n dx,$$

and

$$\int_{R^n} \overline{u}^n dx = \tau^n \int_{R^n} u^n dx = \lim_{k \to +\infty} \int_{R^n} u_k^n dx.$$

Then

$$\int_{R^n} \left(\left| \nabla \overline{u} \right|^n + \overline{u}^n \right) dx \le \lim_{k \to +\infty} \int_{R^n} \left(\left| \nabla u_k \right|^n + \left| u_k^n \right|^n \right) dx = 1.$$

Hence, we have by (6)

$$S \ge \int_{R^{n}} \Phi\left(\infty_{n} \overline{u}^{\frac{n}{n-1}}\right) dx$$

$$= \tau^{n} \int_{R^{n}} \Phi\left(\infty_{n} u^{\frac{n}{n-1}}\right) dx$$

$$= \left[\int_{R^{n}} \Phi\left(\infty_{n} \overline{u}^{\frac{n}{n-1}}\right) dx + (\tau^{n} - 1) \int_{R^{n}} \frac{\infty_{n}^{n-1}}{(n-1)!} dx\right] + (\tau^{n} - 1) \int_{R^{n}} \left(\Phi\left(\infty_{n} u^{\frac{n}{n-1}}\right) - \frac{\infty_{n}}{(n-1)!}\right) dx$$

$$= \lim_{k \to +\infty} \int_{R^{n} \setminus B_{L}} \Phi\left(\beta_{k} u^{\frac{n}{n-1}}\right) dx + (\tau^{n} - 1) \int_{R^{n}} \left(\Phi\left(\infty_{n} u^{\frac{n}{n-1}}\right) - \frac{\infty_{n}}{(n-1)!}\right) dx$$

$$= S + (\tau^{n} - 1) \int_{R^{n}} \left(\Phi\left(\infty_{n} u^{\frac{n}{n-1}}\right) - \frac{\infty_{n}}{(n-1)!}\right) dx.$$

Since $\Phi\left(\infty_n' u^{\frac{n}{n-1}}\right) - \frac{\infty_n^{n-1}}{(n-1)!} u^n > 0$, we have $\tau = 1$, and then

$$S = \int_{R^n} \Phi\left(\infty_n \ u^{\frac{n}{n-1}} \right) dx.$$

So, u is an extremal function.

From now on, we assume $c_k \to +\infty$. We perform blow up procedure:

$$\tau_k^n = \frac{\lambda_k}{c_k^{\frac{n}{n-1}} e^{\beta_k c_k^{\frac{n}{n-1}}}}.$$

By (5) we can find a sufficiently L such that $u_k \le 1$ on $\mathbb{R}^n \setminus B_L$. Then

$$\int_{B_L} \left| \nabla \left(u_k - u_k \left(L \right)^+ \right)^n dx \le 1,$$

and hence by (1), we have

$$\int_{B_L} e^{\alpha_n \left| \left(u_k - u_k(L)^+ \right) \right|^{\frac{n}{n-1}}} \leq C(L).$$

Clearly, for any $p < \infty_n$ we can find a constant C(p), such that

$$pu_k^{\frac{n}{n-1}} \leq \infty_n \left| u_k - u_k(L)^+ \right|^{\frac{n}{n-1}} + C(p),$$

and then, we get

$$\int_{B_L} e^{pu_k^{\frac{n}{n-1}}} dx \le C = C(L, p).$$

Hence

$$\lambda_{k} e^{-\frac{\beta_{k}}{2} c_{k}^{\frac{n}{n-1}}} = e^{-\frac{\beta_{k}}{2} c_{k}^{\frac{n}{n-1}}} \left[\int_{R^{n} \setminus B_{L}} u_{k}^{\frac{n}{n-1}} \Phi' \left(\beta_{k} u_{k}^{\frac{n}{n-1}} \right) dx + \int_{B_{L}} \Phi' \left(\beta_{k} u_{k}^{\frac{n}{n-1}} \right) dx \right]$$

$$\leq C\!\int_{R^n\setminus B_I} u_k^n \, dx \, e^{-\frac{\beta_k}{2}c_k^{\frac{n}{n-1}}} + \int_{B_I} e^{\frac{\beta_k}{2}u_k^{\frac{n}{n-1}}} u_k^{\frac{n}{n-1}} \, dx \, .$$

Since u_k converges in $L^q(B_L)$ for any q > 1, we get $\lambda_k \le Ce^{\frac{\beta_k}{2}c_k^{\frac{n}{n-1}}}$ and hence

$$r_k^n \leq Ce^{-\frac{\beta_k}{2}c_k^{\frac{n}{n-1}}}.$$

Now, we set

$$v_k(x) = u_k(r_k x), \quad w_k(x) = \frac{n}{n-1} \beta_k C_k^{\frac{1}{n-1}} (v_k - c_k),$$

where v_k and w_k are defined on $\Omega_k = \{x \in \mathbb{R}^n : r_k x \in B_1\}$. Using the definition of r_k^n and (4) we have

$$-div|\nabla w_{k}|^{n-2}\nabla w_{k} = \frac{v_{k}^{\frac{1}{n-1}}}{c_{k}^{\frac{1}{n-1}}} \left(\frac{n}{n-1}\beta_{k}\right)^{n-1} e^{\beta_{k}} \left(v_{k}^{\frac{n}{n-1}} - c_{k}^{\frac{n}{n-1}}\right) + O(r_{k}^{n} c_{k}^{n}).$$

In [9], we know that $osc_{B_R}w_k \le C(R)$ for any R > 0. Then from the result in (Dibendetto, 1983) (or [8]), it follows that $\|w_k\|_{C^{1.5}(B_R)} < C(R)$. Therefore w_k converges in C^1_{l0c} and $v_k - c_k \to 0$ in C^1_{l0c} .

Since

$$v_k^{\frac{n}{n-1}} = c_k^{\frac{n}{n-1}} \left(1 + \frac{v_k - c_k}{c_k} \right)^{\frac{n}{n-1}} = c_k^{\frac{n}{n-1}} \left(1 + \frac{n}{n-1} \frac{v_k - c_k}{c_k} + O\left(\frac{1}{c_k^2}\right) \right),$$

we get $\beta_k \left(v_k^{\frac{n}{n-1}} - c_k^{\frac{n}{n-1}} \right) \rightarrow w$ in C_{l0c}^1 , and so we have

$$-div|\nabla w|^{n-2}\nabla w = \left(\frac{n \propto_n}{n-1}\right)^{n-1} e^w, \tag{7}$$

with

$$w(0) = 0 = \max w.$$

Since w is radially symmetric and decreasing, it is easy to see that (7) has only one solution. We can check that

$$w(x) = -n \log(1 + c_n |x|^{\frac{n}{n-1}})$$
, and $\int_{\mathbb{R}^n} e^w dx = 1$,

where
$$c_n = \left(\frac{W_{n-1}}{n}\right)^{\frac{1}{n-1}}$$
. Then,

$$\lim_{L \to +\infty} \lim_{k \to +\infty} \int_{B_{L_{k}}} \frac{u_{k}^{\frac{n}{n-1}}}{\lambda_{k}} e^{\beta_{k} u_{k}^{\frac{n}{n-1}}} dx = \lim_{L \to +\infty} \int_{R^{n}} e^{w} dx = 1.$$
 (8)

For A > 1, let $u_k^A = \min\{u_k, \frac{c_k}{A}\}$. We have

Lemma (1.9) (Li and Ruf, 2000). For any A > 1, there holds

$$\limsup_{k \to +\infty} \int_{\mathbb{R}^n} \left(\left| \nabla u_k^A \right|^n + \left| u_k^A \right|^n \right) dx \le \frac{1}{A}. \tag{9}$$

Proof. Since $\left|\left\{x:u_k\geq\frac{c_k}{A}\right\}\right|^{\frac{c_k}{A}}\right|^n\leq\int_{\left\{u_k\geq\frac{c_k}{A}\right\}}u_k^n\leq 1$, we can find a sequence $\rho_k\to 0$ such that

$$\{x: u_k \geq \frac{c_k}{A}\} \subset B_{\rho_k}.$$

Since u_k converges in $L^p(B_1)$ for any p > 1, we have

$$\lim_{k\to +\infty}\int_{\left|u_k\geq \frac{c_k}{A}\right|}\left|u_k^A\right|^pdx\leq \lim_{k\to +\infty}\int_{\left|u_k\geq \frac{c_k}{A}\right|}u_k^p\ dx=0\ .$$

and

$$\lim_{k \to +\infty} \int_{\mathbb{R}^n} \left(u_k - \frac{c_k}{A} \right)^+ u_k^p \, dx = 0$$

for any p > 0.

Hence, testing equation (4) with $\left(u_k - \frac{c_k}{A}\right)^+$, we have

$$\int_{R} \left(\left| \nabla \left(u_{k} - \frac{c_{k}}{A} \right)^{+} \right|^{n} + \left(u_{k} - \frac{c_{k}}{A} \right)^{+} u_{k}^{n-1} \right) dx = \int_{R^{n}} \left(u_{k} - \frac{c_{k}}{A} \right)^{+} \frac{u_{k}^{\frac{1}{n-1}}}{\lambda_{k}} e^{\beta_{k} u_{k}^{\frac{n}{n-1}}} dx + o(1)$$

$$\geq \int_{B_{L_{k}}} \left(u_{k} - \frac{c_{k}}{A} \right)^{+} \frac{u_{k}^{\frac{1}{n-1}}}{\lambda_{k}} e^{\beta_{k} u_{k}^{\frac{n}{n-1}}} dx + o(1)$$

$$= \int_{B_L} \frac{v_k - \frac{c_k}{A}}{c_k} \left(\frac{v_k - \frac{c_k}{A}}{c_k} + 1 \right)^{\frac{1}{n-1}} e^{w_k + o(1)} dx + o(1).$$

Hence

$$\liminf_{k\to+\infty}\int_{R}\left(\left|\nabla\left(u_{k}-\frac{c_{k}}{A}\right)^{+}\right|^{n}+\left(u_{k}-\frac{c_{k}}{A}\right)^{+}u_{k}^{n-1}\right)dx\geq\frac{A-1}{A}\int_{B_{L}}e^{w}dx.$$

Letting $L \to +\infty$, we get

$$\liminf_{k\to+\infty}\int_{R}\left(\left|\nabla\left(u_{k}-\frac{c_{k}}{A}\right)^{+}\right|^{n}+\left(u_{k}-\frac{c_{k}}{A}\right)^{+}u_{k}^{n-1}\right)dx\geq\frac{A-1}{A}.$$

Now, observe that

$$\int_{R^n} \left(\left| \nabla u_k^A \right|^n + \left| u_k^A \right|^n \right) dx = 1 - \int_{R} \left(\left| \nabla \left(u_k - \frac{c_k}{A} \right)^+ \right|^n + \left(u_k - \frac{c_k}{A} \right)^+ u_k^{n-1} \right) dx + \int_{R^n} \left(u_k - \frac{c_k}{A} \right)^+ dx - \int_{\left\{ u_k \ge \frac{c_k}{A} \right\}} u_k^n dx + \int_{R^n} \left(u_k - \frac{c_k}{A} \right)^+ dx - \int_{\left\{ u_k \ge \frac{c_k}{A} \right\}} u_k^n dx + \int_{R^n} \left(u_k - \frac{c_k}{A} \right)^+ dx - \int_{\left\{ u_k \ge \frac{c_k}{A} \right\}} u_k^n dx + \int_{R^n} \left(u_k - \frac{c_k}{A} \right)^+ dx - \int_{\left\{ u_k \ge \frac{c_k}{A} \right\}} u_k^n dx + \int_{R^n} \left(u_k - \frac{c_k}{A} \right)^+ dx - \int_{\left\{ u_k \ge \frac{c_k}{A} \right\}} u_k^n dx + \int_{R^n} \left(u_k - \frac{c_k}{A} \right)^+ dx - \int_{\left\{ u_k \ge \frac{c_k}{A} \right\}} u_k^n dx + \int_{R^n} \left(u_k - \frac{c_k}{A} \right)^+ dx - \int_{\left\{ u_k \ge \frac{c_k}{A} \right\}} u_k^n dx + \int_{R^n} \left(u_k - \frac{c_k}{A} \right)^+ dx - \int_{\left\{ u_k \ge \frac{c_k}{A} \right\}} u_k^n dx + \int_{R^n} \left(u_k - \frac{c_k}{A} \right)^+ dx - \int_{\left\{ u_k \ge \frac{c_k}{A} \right\}} u_k^n dx + \int_{\left\{ u_k \ge \frac{c$$

$$\int_{\left\{u_k\geq\frac{c_k}{A}\right\}}\left|u_k^A\right|^ndx$$

$$\leq 1 - \left(1 - \frac{1}{A}\right) + o\left(1\right).$$

Hence, we get this Lemma

Corollary (1.10) (Li and Ruf, 2000). We have

$$\int_{R^n \setminus B_s} \left(\nabla u_k^A \right) + u_k^n dx = 0,$$

for any $\delta > 0$, and then u = 0.

Proof. Letting $A \to +\infty$, then for any constant c, we have

$$\int_{\{u_k \le c\}} \left(\nabla u_k^A \right) + u_k^n dx \to 0.$$

So, we get this Corollary.

Lemma (1.11) (Li and Ruf, 2000). We have

$$\lim_{k \to +\infty} \int_{R^n \setminus B_L} \Phi \left(\beta_k u_k^{\frac{n}{n-1}} \right) dx \le \lim_{L \to +\infty} \lim_{k \to +\infty} \left(e^{\beta_k u_k^{\frac{n}{n-1}}} - 1 \right) dx = \limsup_{k \to +\infty} \frac{\lambda_k}{c_k^{\frac{n}{n-1}}}. \tag{10}$$

and consequently

$$\frac{\lambda_k}{c_k}$$
, and $\sup_k \frac{c_k^{\frac{n}{n-1}}}{\lambda_k} < +\infty$. (11)

Proof. We have

$$\int_{R^{n}} \Phi\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) dx \leq \int_{\left\{u_{k} \leq \frac{c_{k}}{A}\right\}} \Phi\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) dx + \int_{\left\{u_{k} \leq \frac{c_{k}}{A}\right\}} \Phi'\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) dx \leq \int_{R^{n}} \Phi\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) dx + A^{\frac{n}{n-1}} \frac{\lambda_{k}}{c_{k}^{\frac{n}{n-1}}} \int_{R^{n}} \frac{u_{k}^{\frac{n}{n-1}}}{2} \Phi'\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) dx .$$

Applying (5), we can find L such that $u_k \le 1$ on $\mathbb{R}^n \setminus B_L$. Then by Corollary (1.11) and the form of Φ , we have

$$\lim_{k \to +\infty} \int_{\mathbb{R}^n \setminus B_l} \Phi\left(p\beta_k(u_k^A)^{\frac{n}{n-1}}\right) dx \le \lim_{k \to +\infty} C(p) \int_{\mathbb{R}^n \setminus B_l} u_k^n dx = 0$$
 (12)

for any p > 0.

Since by Lemma (1.10) $\limsup_{k \to +\infty} \int_{\mathbb{R}^n} \left(\left| \nabla u_k^A \right|^n + \left| u_k^A \right|^n \right) dx \le \frac{1}{A} < 1$, it follows from (1) that

$$\sup_{k} \int_{B_{L}} e^{p'\beta_{k}\left(u_{k}^{A}-u_{k}\left(L\right)^{+}\right)_{n-1}^{n}} dx < +\infty$$

for any $p' < A^{\frac{1}{n-1}}$. Since for any p < p'

$$p(u_k^A)^{\frac{n}{n-1}} \leq p'\left(\left(u_k^A - u_k(L)^+\right)^{\frac{n}{n-1}} + C(p, p')\right),$$

we have

$$\sup_{L} \int_{B_{L}} \Phi \left(\beta_{k} \left(u_{k}^{A} \right)^{\frac{n}{p-1}} \right) dx < +\infty$$
 (13)

for any $p < A^{\frac{1}{n-1}}$. Then on B_L , by the weak compactness of Banach space, we get

$$\lim_{k \to +\infty} \int_{B_L} \Phi\left(\beta_k \left(u_k^A\right)^{\frac{n}{n-1}}\right) dx = \int_{B_L} \Phi(0) dx = 0.$$

Hence, we have

$$\lim_{k\to+\infty}\int_{B_L}\Phi\left(\beta_ku_k^{\frac{n}{n-1}}\right)dx=\lim_{L\to+\infty}\lim_{k\to+\infty}A^{\frac{n}{n-1}}\frac{\lambda_k}{c_k^{\frac{n}{n-1}}}\int_{B_L}\frac{u_k^{\frac{n}{n-1}}}{\lambda_k}\Phi'\left(\beta_ku_k^{\frac{n}{n-1}}\right)dx+C_{\epsilon}=\lim_{K\to+\infty}A^{\frac{n}{n-1}}\frac{\lambda_k}{c_k^{\frac{n}{n-1}}}+C_{\epsilon}.$$

As $A \rightarrow 1$ and $\epsilon \rightarrow 0$, we obtain (10).

If $\frac{\lambda_k}{c_k}$ was bounded or $\sup_{k} \frac{c_k^{\frac{n}{n-1}}}{\lambda_k} = +\infty$, it would follow from (10) that

$$\sup_{\int_{\mathbb{R}^{n}}\left(\left|\nabla v\right|^{n}+\left|v\right|^{n}\right)=1,v\in H_{0}^{1,n}\left(B_{R_{k}}\right)}\int_{B_{R_{k}}}\Phi\left(\infty_{n}\left|v\right|^{\frac{n}{n-1}}\right)dx=0.$$

Which is impossible.

Lemma (1.12) (Carleson and Chang, 1986). We have that $c_k \frac{u_k^{\frac{1}{n-1}}}{\lambda_k} \Phi' \left(\beta_k u_k^{\frac{n}{n-1}}\right)$ converges to δ_0

weakly, *i.e.* for any $\varphi \in D(\mathbb{R}^n)$

$$\lim_{k\to+\infty}\varphi c_k \frac{u_k^{\frac{1}{n-1}}}{\lambda_k} \int_{B_L} \frac{u_k^{\frac{n}{n-1}}}{\lambda_k} \Phi' \left(\beta_k u_k^{\frac{n}{n-1}}\right) dx = \varphi(0).$$

Proof. Suppose $supp \varphi \subset B_p$. We split the integral

$$\int_{B_{p}} \varphi \frac{c_{k} u_{k}^{\frac{1}{n-1}}}{\lambda_{k}} \Phi' \left(\beta_{k} u_{k}^{\frac{n}{n-1}} \right) dx \leq \int_{\left\{ u_{k} \geq \frac{c_{k}}{\lambda} \right\} \setminus B_{L_{k}}} \dots + \int_{B_{L_{k}}} \dots + \int_{\left\{ u_{k} < \frac{c_{k}}{\lambda} \right\}} \dots = I_{1} + I_{2} + I_{3}.$$

We have

$$I_{1} \leq A \|\varphi\|_{C^{0}} \int_{\mathbb{R}^{n} \setminus B_{L_{n}}} \frac{u_{k}^{\frac{n}{n-1}}}{\lambda_{k}} \Phi' \left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) dx = A \|\varphi\|_{C^{0}} \left(1 - \int_{B_{L}} e^{w_{k} + o(1)} dx\right),$$

and

$$I_{2} = \int_{B_{L}} \varphi(r_{k}x) \frac{c_{k} \left(c_{k} + \left(v_{k} - c_{k}\right)\right)^{\frac{1}{n-1}}}{c_{k}^{\frac{n}{n-1}}} e^{w_{k} + o(1)} dx = \varphi(0) \int_{B_{L}} e^{w} dx + o(1) = \varphi(0) + o(1).$$

By (12) and (13) we have

$$\int_{\mathbb{R}^n} \Phi\left(p\beta_k \mid u_k^A \mid_{\frac{n}{n-1}}^{\frac{n}{n-1}}\right) dx < C$$

for any $p < A^{\frac{1}{n-1}}$. We set $\frac{1}{q} + \frac{1}{p} = 1$. Then we get by (11)

$$I_{3} = \int_{\left\{u_{k} \leq \frac{c_{k}}{\lambda}\right\}} \varphi c_{k} \frac{u_{k}^{\frac{1}{n-1}}}{\lambda_{k}} \Phi' \left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) dx \leq \frac{c_{k}}{\lambda_{k}} \left\|\varphi\right\|_{C^{0}} \left\|u_{k}^{\frac{1}{n-1}}\right\|_{L^{q}(\mathbb{R}^{n})} \left\|e^{\beta_{k} \left|u_{k}^{A}\right|^{\frac{n}{n-1}}}\right\|_{L^{q}(\mathbb{R}^{n})} \to 0.$$

Letting $L \to +\infty$, we deduce now that

$$\lim_{k \to +\infty} \int_{\mathbb{R}^n} \varphi \frac{c_k u_k^{\frac{1}{n-1}}}{\lambda_k} \Phi' \left(\beta_k u_k^{\frac{n}{n-1}} \right) dx = \varphi(0)$$

Proposition (1.13) (Li and Ruf, 2000). On any $\Omega \subset \mathbb{R}^n \setminus \{0\}$, we have that $c_k^{\frac{1}{n-1}}u_k$ converges to G in $C'(\Omega)$, where $G \in C_{loc}^{1,\infty}(\mathbb{R}^n \setminus \{0\})$ satisfies the following equation

$$-div|\nabla G|^{n-2}\nabla G + G^{n-1} = \delta_0. \tag{14}$$

Proof. We set $U_k = c_k^{\frac{1}{n-1}} u_k$, which satisfy by (4) the equations:

$$-div|\nabla U_{k}|^{n-2}\nabla U + U_{k}^{n-1} = \frac{c_{k}u_{k}^{\frac{1}{n-1}}}{\lambda_{k}}\Phi'(\beta_{k}u_{k}^{\frac{n}{n-1}}).$$
 (15)

For our purpose, we need to prove

$$\int_{B_n} \left| U_k \right|^q dx \le C(q, R),$$

where C(q,R) does not depend on k. We use the idea in [80] to prove this statement.

Set
$$\Omega_t = \{0 \le U_k \le t\}, U_k^t = \min\{U_k, t\}$$
. Then we have

$$\int_{\Omega_{t}} \left(|\nabla U_{k}|^{n} + |U_{k}|^{n} \right) dx \leq \int_{\mathbb{R}^{n}} \left(-U_{k}^{t} \Delta_{n} U_{k} + U_{k}^{t} U_{k}^{n-1} \right) = \int_{\mathbb{R}^{n}} U_{k}^{t} \frac{c_{k} u_{k}^{\frac{1}{n-1}}}{\lambda_{k}} \Phi' \left(\beta_{k} u_{k}^{\frac{n}{n-1}} \right) \leq 2t.$$

Let η be a radially symmetric cut-off function which is 1 on B_R and 0 on B_{2R}^c . Then,

$$\int_{B_{2n}} \left| \nabla \eta U_k^t \right|^n dx \le C_1(R) + C_2(R)t.$$

Then, when t is bigger than $\frac{C_1(R)}{C_2(R)}$, we have

$$\int_{B_{2n}} \left| \nabla \eta U_k^t \right|^n dx \leq 2C_2(R)t.$$

Set ρ such that $U_k(\rho) = t$. Then we have

$$\inf\{\int_{B_{2R}} |\nabla v|^n dx : v \in H_0^{1,n}(B_{2R}) \text{ and } v|_{B_\rho} = t\} \le 2C_2(R)t.$$

On the other hand, the inf is achieved by $-t \log \frac{|x|}{2R} / \log \frac{2R}{\rho}$. By a direct computation, we have

$$\frac{\omega_{n-1}t^{n-1}}{\left(\log\frac{2R}{\varrho}\right)^{n-1}} \leq 2R,$$

and hence for any $t > \frac{C_1(R)}{C_2(R)}$

$$|\{x \in B_{2R} : U_k \ge t\}| = |B_{\rho}| \le C_3(R)e^{-A(R)t},$$

where A(R) is a constant only depending on R. Then, for any $\delta < A$,

$$\int_{B_R} e^{\delta U_k} dx \le \sum_{m=0}^{\infty} \mu(\{m \le U_k \le m+1\}) e^{\delta(m+1)} \le \sum_{m=0}^{\infty} e^{-(A-\delta)m} e^{\delta} \le C.$$

Then, testing the equation (15) with the function $\log \frac{1+2(U_k-U_k(R))^+}{1-(U_k-U_k(R))^+}$, we get

$$\int_{B_{R}} \frac{|\nabla U_{k}|^{n}}{(1 + U_{k} - U_{k}(R))(1 + 2U_{k} - 2U_{k}(R))} dx$$

$$\leq \log 2 \int_{B_R} \frac{c_k u_k^{\frac{1}{n-1}}}{\lambda_k} \Phi' \left(\beta_k u_k^{\frac{n}{n-1}} \right) dx - \int_{B_R} U_k \log \frac{1 + 2(U_k - U_k(R))^+}{1 - (U_k - U_k(R))^+} dx \leq C.$$

Given q < n, by Young's inequality, we have

$$\int_{B_{R}} \left| \nabla U_{k} \right|^{q} dx \leq \int_{B_{R}} \left[\frac{\left| \nabla U_{k} \right|^{n}}{\left(1 + U_{k} - U_{k}(R) \right) \left(1 + 2U_{k} - 2U_{k}(R) \right)} dx + \left(\left(1 + U_{k} \right) \left(1 + 2U_{k} \right) \right)^{\frac{n}{n-1}} \right]$$

$$\leq \int_{B_{R}} \left[\frac{\left| \nabla U_{k} \right|^{n}}{(1 + U_{k} - U_{k}(R))(1 + 2U_{k} - 2U_{k}(R))} dx + Ce^{\delta U_{k}} \right] dx.$$

Hence, we are able to assume that U_k converges to a function G weakly in $H^{1,p}(B_R)$ for any R and p < n. Applying Lemma (1.12), we get (14).

Hence U_k is bounded in $L^q(\Omega)$ for any q > 0. By Corollary (1.10) and Theorem C, $e^{\beta_k u_k^{\frac{n}{n-1}}}$ is also bounded in $L^q(\Omega)$ for any q > 0. Then applying [9], and [8](or [5]), we get $\|U_k\|_{C^{1,\infty}(\Omega)} \le C$. So U_k converges to G in $C^1(\Omega)$.

For the Green function G we have the following result.

Lemma (1.14) (Li and Ruf, 2000). $G \in C_{loc}^{1,\infty}(\mathbb{R}^n \setminus \{0\})$ and near 0 we can write

$$G = -\frac{1}{\infty_n} \log r^n + A + O(r^n \log^n r),$$

here, A is a constant. Moreover, for any $\delta > 0$, we have

$$\lim_{k \to +\infty} \int_{R^n \setminus B_{\delta}} \left(\left| \nabla c_k^{\frac{i}{n-1}} u_k \right|^n + \left(c_k^{\frac{1}{n-1}} u_k \right)^n \right) dx = \int_{R^n \setminus B_{\delta}} \left(\left| \nabla G \right|^n + \left(G \right)^n \right) dx$$

$$= G(\delta) \left(t - \int_{R} G^{n-1} dx \right).$$

Proof. Slightly modifying the proof in [14], we can prove

$$G = -\frac{1}{\infty_n} \log r^n + A + o(1).$$

One can see [26] for details. Further, testing the equation (15) with 1, we get

$$\omega_{n-1}G^{d}(r)^{n-1}r^{n-1} = \int_{\partial B} \left| \nabla G \right|^{n-2} \frac{\partial G}{\partial n} = 1 - \int_{B_{r}} G^{n-1} dx = 1 + O(r^{n} \log^{n-1} r).$$

Then we get (16).

We have

$$\int_{R^n \setminus B_{\delta}} u_k^{\frac{n}{n-1}} \Phi' \left(\beta_k u_k^{\frac{n}{n-1}} \right) dx \le C \int_{R^n \setminus B_{\delta}} u_k^n dx \to 0.$$
 (17)

Recall that $U_k \in H_0^{1,n}(B_{R_k})$. By equation (15) we get

$$\int_{R^n\setminus B_{\delta}} \left(|\nabla U_k|^n + U_k^n \right) dx = \frac{c_k^{\frac{n}{n-1}}}{\lambda_k} \int_{R^n\setminus B_{\delta}} u_k^{\frac{n}{n-1}} \Phi' \left(\beta_k u_k^{\frac{n}{n-1}} \right) dx - \int_{\partial B_{\delta}} \frac{\partial U_k}{\partial n} |\nabla U_k|^{n-2} U_k dS.$$

By (17) and (11) we then get

$$\lim_{k \to +\infty} \int_{\mathbb{R}^n \setminus B_{\delta}} \left(|\nabla U_k|^n + U_k^n \right) dx = \lim_{k \to +\infty} \int_{\partial B_{\delta}} \frac{\partial U_k}{\partial n} |\nabla U_k|^{n-2} U_k dS$$

$$= -G(\delta) \int_{\partial B_{\delta}} \frac{\partial G}{\partial n} |\nabla G|^{n-2} dS$$

$$= G(\delta) \left(1 - \int_{\mathbb{R}^n} G^{n-1} dx \right).$$

We are now in the position to complete the proof of Theorem (1.1): We have seen in (12) that

$$\int_{R^n\setminus B_{\delta}} \Phi\left(\beta_k u_k^{\frac{n}{n-1}}\right) dx \leq C.$$

So, we only need to prove on B_R

$$\int_{B_n} e^{\beta_k u_k^{\frac{n}{n-1}}} dx < C.$$

The classical Trudinger-Moser inequality implies that

$$\int_{B_{p}} e^{\beta_{k} \left(u_{k} - u_{k}(R)^{+}\right)^{\frac{n}{n-1}}} dx < C = C(R).$$

By Proposition (1.14), $u_k(R) = O\left(\frac{1}{c_k^{n-1}}\right)$, and hence we have

$$u_k^{\frac{n}{n-1}} \le ((u_k - u_k(R))^+ + u_k(R))^{\frac{n}{n-1}} \le ((u_k - u_k(R))^+)^{\frac{n}{n-1}} + C_1,$$

then, we get

$$\int_{B_R} e^{\beta_k u_k^{\frac{n}{n-1}}} dx < C'.$$

To proof Proposition (1.16), we will use a result of Carleson and Chang (see [12]:

Lemma (1.15) (Li and Ruf, 2000). Let B be the unit ball in \mathbb{R}^n . Assume that u_k is a sequence in

$$H_0^{1,n}(B)$$
 with $\int_B |\nabla U_k|^n dx = 1$. If $u_k \to 0$, then

$$\limsup_{k \to +\infty} \int_{B} \left(e^{\alpha_{n} |u_{k}|^{\frac{n}{n-1}}} - 1 \right) dx \le |B| e^{1+1/2 + \dots + 1/(n-1)}.$$

Then, we get the following:

Proposition (1.16) (Li and Ruf, 2000). If S cannot be attained, then

$$S > \min \left\{ \frac{\infty_n^{n-1}}{(n-1)!} e^{\alpha_n A + 1 + 1/2 + \dots + 1/(n-1)} \right\}.$$

Proof. Set $u'_k = \frac{(u_k(x) - u_k(\delta))^+}{\|\nabla u_k\|_{L^n(B_{\delta})}}$ which is in $H_0^{1,n}(B_{\delta})$. Then by the result of Carleson and Chang,

we have

$$\limsup_{k\to+\infty}\int_{B_{\delta}}e^{\beta_k u_k^{\frac{n}{n-1}}}\leq |B_{\delta}|e^{1+1/2+\cdots+1/(n-1)}.$$

By Lemma (1.15), We have

$$\int_{R^n\setminus B_{\delta}} \left(\left| \nabla c_k^{\frac{1}{n-1}} u_k \right|^n + \left(c_k^{\frac{1}{n-1}} u_k \right)^n \right) dx \to G(\delta) \left(1 - \int_{B_{\delta}} G^{n-1} dx \right),$$

and therefore, we get

$$\int_{B_{\delta}} \left| \nabla u_k \right|^n dx = 1 - \int_{R^n \setminus B_{\delta}} \left(\left| \nabla u_k \right|^n + u_k^n \right) dx - \int_{B_{\delta}} u_k^n dx = 1 - \frac{G(\delta) - \epsilon_k (\delta)}{c_k^{\frac{n}{n-1}}}, \quad (18)$$

where $\lim_{\delta \to 0} \lim_{k \to +\infty} \epsilon_k = 0$.

By (12) in Lemma (1.11) we have

$$\lim_{L\to+\infty}\lim_{k\to+\infty}\int_{B_{\rho}\setminus B_{L_k}}e^{\beta_k u_k^{\prime\frac{n}{n-1}}}=\left|B_{\rho}\right|,$$

for any $\rho < \delta$. Furthermore, on B_{ρ} we have by (18)

$$\left(u_{k}'\right)^{\frac{n}{n-1}} \leq \frac{u_{k}^{\frac{n}{n-1}}}{\left(1 - \frac{G(\delta) + \in_{k}(\delta)}{c_{k}^{\frac{n}{n-1}}}\right)^{\frac{1}{n-1}}} = u_{k}^{\frac{n}{n-1}} \left(1 + \frac{1}{n-1} \frac{G(\delta) + \in_{k}(\delta)}{c_{k}^{\frac{n}{n-1}}} + O\left(\frac{1}{c_{k}^{\frac{2n}{n-1}}}\right)\right)$$

$$=u_k^{\frac{n}{n-1}}+\frac{1}{n-1}G(\delta)(\frac{u_k}{c_k})+O(c_k^{\frac{-n}{n-1}})$$

$$\leq u_k^{\frac{n}{n-1}} - \frac{\log \delta^2}{(n-1)\infty_n}.$$

Then we have

$$\lim_{L\to +\infty}\lim_{k\to +\infty}\int_{B_{\rho}\backslash B_{L_{k}}}e^{\beta_{k}u_{k}^{\frac{n}{n-1}}}dx\leq O\left(\delta^{-n}\right)\lim_{L\to +\infty}\lim_{k\to +\infty}\int_{B_{\rho}\backslash B_{L_{k}}}e^{\beta_{k}u_{k}^{\frac{n}{n-1}}}dx\to \left|B_{\rho}\right|O\left(\delta^{-n}\right).$$

since $u'_k \to 0$ on $B_{\delta} \setminus B_{\rho}$, we get

$$\lim_{k\to+\infty}\int_{B_{\delta}\setminus B_{\alpha}}\left(e^{\beta_{k}u_{k}^{\frac{n}{n-1}}}-1\right)dx=0,$$

then

$$0 \leq \lim_{L \to +\infty} \lim_{k \to +\infty} \int_{B_{\delta} \setminus B_{L_{n}}} \left(e^{\beta_{k} u_{k}^{\prime n-1}} - 1 \right) dx \leq \left| B_{\rho} \right| O\left(\delta^{-n}\right).$$

Letting $\rho \rightarrow 0$, we get

$$\lim_{L\to +\infty}\lim_{k\to +\infty}\int_{B_\delta\setminus B_{L_k}}\left(e^{\beta_k u_k'^{\frac{n}{n-1}}}-1\right)dx=0\,.$$

So we have

$$\lim_{L\to+\infty}\lim_{k\to+\infty}\int_{B_{\delta}\setminus B_{L_n}}\left(e^{\beta_k u_k^{\frac{n}{n-1}}}-1\right)dx \leq e^{1+1/2+\cdots+1/(n-1)}|B_{\delta}|.$$

Now, we fix an L. Then for any $x \in B_{Lr}$, we have

$$\beta_{k} u_{k}^{\frac{n}{n-1}} = \beta_{k} \left(\frac{u_{k}}{\|\nabla u_{k}\|_{L^{n}(B_{s})}} \right)^{\frac{n}{n-1}} \left(\int_{B_{\delta}} |\nabla u_{k}|^{n} dx \right)^{\frac{1}{n-1}}$$

$$= \beta_{k} \left(u'_{k} + \frac{u_{k}(\delta)}{\|\nabla u_{k}\|_{L^{n}(B_{\delta})}} \right)^{\frac{n}{n-1}} \left(\int_{B_{\delta}} |\nabla u_{k}|^{n} dx \right)^{\frac{1}{n-1}}$$
(using that $u_{k}(\delta) = O\left(\frac{1}{c_{k}^{\frac{1}{n-1}}}\right)$ and $\|\nabla u_{k}\|_{L^{n}(B_{\delta})} = 1 + O\left(\frac{1}{c_{k}^{\frac{1}{n-1}}}\right)$)
$$= \beta_{k} \left(u' +_{k} u_{k}(\delta) + O\left(\frac{1}{c_{k}^{\frac{1}{n-1}}}\right) \right)^{\frac{n}{n-1}} \left(\int_{B_{\delta}} |\nabla u_{k}|^{n} dx \right)^{\frac{1}{n-1}}$$

$$= \beta_{k} u'_{k}^{\frac{n}{n-1}} \left(1 + \frac{u_{k}(\delta)}{u'_{k}} + O\left(\frac{1}{c_{k}^{\frac{1}{n-1}}}\right) \right)^{\frac{n}{n-1}} \left(1 - \frac{G(\delta) + \epsilon_{k}(\delta)}{c_{k}^{\frac{n}{n-1}}} \right)^{\frac{1}{n-1}}$$

$$= \beta_{k} u'_{k}^{\frac{n}{n-1}} \left[1 + \frac{n}{n-1} \frac{u_{k}(\delta)}{u'_{k}} - \frac{1}{n-1} \frac{G(\delta) + \epsilon_{k}(\delta)}{c_{k}^{\frac{n}{n-1}}} + O\left(\frac{1}{c_{k}^{\frac{2n}{n-1}}}\right) \right].$$

It is easy to check that

$$\frac{u_k'(r_k x)}{c_k} \to 1$$
, and $(u_k'(r_k x))^{\frac{1}{n-1}} u_k(\delta) \to G(\delta)$.

So, we get

$$\lim_{L \to +\infty} \lim_{k \to +\infty} \int_{B_{L_{n}}} \left(e^{\beta_{k} u_{k}^{\frac{n}{n-1}}} - 1 \right) dx = \lim_{L \to +\infty} \lim_{k \to +\infty} e^{\alpha_{n} G(\delta)} \int_{B_{L_{n}}} \left(e^{\beta_{k} u_{k}^{\frac{n}{n-1}}} - 1 \right) dx$$

$$\leq e^{\alpha_{n} G(\delta)} \delta^{n} \frac{\omega_{n-1}}{n} \leq e^{1+1/2 + \dots + 1/(n-1)}$$

$$= e^{\alpha_{n} \left(-\frac{1}{\alpha_{n}} \log \delta^{n} + A + O\left(\delta^{n} \log^{n} \delta\right) \right)} \delta^{n} \frac{\omega_{n-1}}{n} e^{1+1/2 + \dots + 1/(n-1)}.$$

letting $\delta \to 0$, then the above inequality together with Lemma (1.8) imply Proposition (1.16).

1. The test functions

Definition (2.1) (Li and Ruf, 2000). We will construct a function sequence $\{u_{\epsilon}\}\subset H^{1,n}(\mathbb{R}^n)$ with $\|u_{\epsilon}\|_{H^{1,n}}=1$ which satisfies

$$\int_{R^n} \Phi\left(\infty_n \left| u_{\epsilon} \right|^{\frac{n}{n-1}} \right) dx > \frac{\omega_{n-1}}{n} e^{A+1+1/2+\cdots+1/(n-1)},$$

for \in > 0 sufficiently small.

Let

$$u_{\epsilon} = \begin{cases} C - \frac{\left(n-1\right)\log\left(1 + c_{n}\left|\frac{x}{\epsilon}\right|^{\frac{n}{n-1}}\right) + A_{\epsilon}}{\infty_{n} C^{\frac{1}{n-1}}} & |x| \leq L_{\epsilon} \\ \frac{G(|x|)}{C^{\frac{1}{n-1}}} & |x| > L_{\epsilon}. \end{cases}$$

where A_{\in} , C and L are functions of \in (which will be defined later, by (19), (20), (21)) which satisfy

$$(i) L \rightarrow +\infty, C \rightarrow +\infty \text{ and } L_{\epsilon} \rightarrow 0, \text{ as } \epsilon \rightarrow 0;$$

$$(ii) C - \frac{(n-1)\log(1+c_nL^{\frac{n}{n-1}})+A_{\epsilon}}{\infty_n C^{\frac{1}{n-1}}}$$

$$(iii)\frac{\log L}{C^{\frac{n}{n-1}}} \to 0 \quad as \quad \in \to 0.$$

We use the normalization of u_{ϵ} to obtain information on A_{ϵ} , C and L, we have

$$\begin{split} &\int_{R^n \setminus B_{L_{\epsilon}}} \left(|\nabla u_{\epsilon}|^n + u_{\epsilon}^n \right) dx = \frac{1}{C^{\frac{n}{n-1}}} \left(\int_{B_{L_{\epsilon}}^{\epsilon}} |\nabla G|^n dx + \int_{B_{L_{\epsilon}}^{\epsilon}} G^n dx \right) \\ &= \frac{1}{C^{\frac{n}{n-1}}} \int_{\partial B_{L_{\epsilon}}} G(L_{\epsilon}) |\nabla G|^{n-2} \frac{\partial G}{\partial n} dS \\ &= \frac{G(L_{\epsilon}) - G(L_{\epsilon}) \int_{B_{L_{\epsilon}}} G dx}{C^{\frac{n}{n-1}}} \,, \end{split}$$

And

$$\int_{B_{L_{\epsilon}}} \left| \nabla u_{\epsilon} \right|^{n} dx = \frac{n-1}{\infty_{n} C^{\frac{n}{n-1}}} \int_{0}^{c_{n} L^{\frac{n}{n-1}}} \frac{u^{n-1}}{(1+u)^{n}} du$$

$$= \frac{n-1}{\infty_{n} C^{\frac{n}{n-1}}} \int_{0}^{c_{n} L^{\frac{n}{n-1}}} \frac{((1+u)-1)^{n-1}}{(1+u)^{n}} du$$

$$= \frac{n-1}{\infty_{n} C^{\frac{n}{n-1}}} \sum_{k=0}^{n-2} \frac{C_{n-1}^{k} (-1)^{n-1-k}}{n-1-k}$$

$$= \frac{n-1}{\infty_n C^{\frac{n}{n-1}}} \log \left(1 + c_n L^{\frac{n}{n-1}}\right) + O\left(\frac{1}{L^{\frac{n}{n-1}} C^{\frac{n}{n-1}}}\right)$$

$$=-\frac{n-1}{\infty_n C^{\frac{n}{n-1}}}\left(1+1/2+1/3+\cdots+1/(n-1)\right)+\frac{n-1}{\infty_n C^{\frac{n}{n-1}}}\log\left(1+c_nL^{\frac{n}{n-1}}\right)+O\left(\frac{1}{L^{\frac{n}{n-1}}C^{\frac{n}{n-1}}}\right),$$

where we used the fact

$$-\sum_{k=0}^{n-2} \frac{C_{n-1}^k (-1)^{n-1-k}}{n-1-k} = 1 + \frac{1}{2} + \dots + \frac{1}{n-1}.$$

It is easy to check that

$$\int_{B_{L_{\epsilon}}} |\nabla u_{\epsilon}|^n dx = O((L_{\epsilon})^n C^n \log L),$$

and thus we get

$$\int_{\mathbb{R}^{n}} \left(|\nabla u_{\epsilon}|^{n} + u_{\epsilon}^{n} \right) dx = \frac{n-1}{\infty_{n} C^{\frac{n}{n-1}}} \left\{ -(n-1)(1+1/2+1/3+\dots+1/(n-1)) + \infty_{n} + (n-1)\log(1+c_{n}L^{\frac{n}{n-1}}) - \log(L_{\epsilon}) + \phi \right\},$$

where

$$\phi = O\left(\left(L_{\in}\right)^{n} C^{n} \log L + \left(L_{\in}\right)^{n} \log^{n} L_{\in} + L^{\frac{n}{n-1}}\right).$$

Setting
$$\int_{\mathbb{R}^n} \left(\nabla u_{\epsilon} \right)^n + u_{\epsilon}^n dx = 1$$
, we obtain

$$\propto_n C^{\frac{n}{n-1}} = -(n-1)(1+1/2+\cdots+1/(n-1)) + \propto_n A + \log \frac{\left(1+c_n L^{\frac{n}{n-1}}\right)^{n-1}}{L^n} - \log \epsilon^n + \phi$$

$$= -(n-1)(1+1/2+\dots+1/(n-1))+ \propto_n A + \log \frac{\omega_{n-1}}{n} - \log \epsilon^n + \phi.$$
 (19)

By (ii) we have

$$\propto_n C^{\frac{n}{n-1}} - (n-1)\log(1 + c_n L^{\frac{n}{n-1}}) + A_{\epsilon} = \infty G(L_{\epsilon})$$

and hence

$$-(n-1)(1+1/2+\cdots+1/(n-1))+\infty_n A-\log(L_{\epsilon})^n+\phi+A_{\epsilon}=\infty G(L_{\epsilon});$$

this implies that

$$A_{\alpha} = -(n-1)(1+1/2+\dots+1/(n-1)) + \phi. \tag{20}$$

Next, we compute $\int_{B_L} e^{\alpha_n |u|_n^{\frac{n}{n-1}}} dx$.

Clearly, $\varphi(t) = \left|1 - t\right|^{\frac{n}{n-1}} + \frac{n}{n-1}t$ is increasing when $0 \le t \le 1$ and decreasing when $t \le 0$, then

$$\left|1-t\right|^{\frac{n}{n-1}} \ge 1-\frac{n}{n-1}t$$
, when $|t| < 1$.

Thus we have by (ii), for any $x \in B_{L_i}$

Then we have

$$\begin{split} &\int_{B_{L_{\epsilon}}} e^{\alpha_{n} |u_{\epsilon}|_{n-1}^{\frac{n}{n-1}}} dx \geq \int_{B_{L_{\epsilon}}} e^{\alpha_{n} C^{\frac{n}{n-1} - n \log\left(1 + c_{n} |\frac{x}{\epsilon}|_{n-1}^{\frac{n}{n-1}}\right) - \frac{n}{n-1} A_{\epsilon}}} dx \\ &= e^{\alpha_{n} C^{\frac{n}{n-1}} - \frac{n}{n-1} A_{\epsilon}} \int_{B} \frac{\epsilon^{n}}{\left(1 + c_{n} |x|^{\frac{n}{n-1}}\right)^{n}} dx \\ &= e^{\alpha_{n} C^{\frac{n}{n-1}} - \frac{n}{n-1} A_{\epsilon}} \int_{0}^{c_{n} L^{\frac{n}{n-1}}} \frac{u^{n-1}}{(1 + u)^{n}} du \\ &= e^{\alpha_{n} C^{\frac{n}{n-1}} - \frac{n}{n-1} A_{\epsilon}} (n-1) \int_{0}^{c_{n} L^{\frac{n}{n-1}}} \frac{((u+1)-1)^{n-2}}{(1+u)^{n}} du \\ &= e^{\alpha_{n} C^{\frac{n}{n-1}} - \frac{n}{n-1} A_{\epsilon}} \in \left(1 + O(L^{-\frac{n}{n-1}})\right) \\ &= \frac{\omega_{n-1}}{n} e^{A+1+1/2+\dots+1/(n-1)} + O((L_{\epsilon})^{n} C^{n} \log L + (L_{\epsilon})^{n} \log^{n} L_{\epsilon} + L^{-\frac{n}{n-1}}). \end{split}$$

Here, we used the fact

$$\sum_{k=0}^{m} \frac{\left(-1\right)^{m-k}}{m-k-1} C_{m}^{k} = \frac{1}{m+1}.$$

Then

$$\int_{B_{L_{\epsilon}}} \Phi\left(\propto_{n} u_{\epsilon}^{\frac{n}{n-1}} \right) dx \ge \frac{\omega_{n-1}}{n} e^{\propto_{n} A + 1 + 1/2 + \dots + 1/(n-1)} + O\left((L_{\epsilon})^{n} C^{n} \log L + (L_{\epsilon})^{n} \log^{n} L_{\epsilon} + L^{-\frac{n}{n-1}} \right).$$

Moreover, on $\mathbb{R}^n \setminus B_{L_{\epsilon}}$ we have the estimate

$$\int_{R^n\setminus B_{L_{\epsilon}}} \Phi\left(\infty_n \ u_{\epsilon}^{\frac{n}{n-1}}\right) dx \ge \frac{\infty_n^{n-1}}{(n-1)!} \int_{R^n\setminus B_{L_{\epsilon}}} \left| \frac{G(x)}{C^{\frac{1}{n-1}}} \right|^n dx,$$

and thus, we get

$$\int_{B_{L_{\epsilon}}} \Phi\left(\infty_{n} u_{\epsilon}^{\frac{n}{n-1}}\right) dx \qquad \geq \frac{\omega_{n-1}}{n} e^{\infty_{n}A+1+1/2+\dots+1/(n-1)} \qquad + \frac{\infty_{n}^{n-1}}{(n-1)!} \int_{\mathbb{R}^{n} \setminus B_{L_{\epsilon}}} \left| \frac{G(x)}{C^{\frac{1}{n-1}}} \right|^{n} dx \\
+ O\left(\left(L_{\epsilon}\right)^{n} C^{n} \log L + \left(L_{\epsilon}\right)^{n} \log^{n} L_{\epsilon} + L^{-\frac{n}{n-1}}\right) \\
= \frac{\omega_{n-1}}{n} e^{\infty_{n}A+1+1/2+\dots+1/(n-1)} \qquad + \frac{\infty_{n}^{n-1}}{(n-1)!} \left[\int_{\mathbb{R}^{n} \setminus B_{L_{\epsilon}}} \left| G(x) \right|^{n} dx \\
+ O\left(\left(L_{\epsilon}\right)^{n} C^{n+\frac{n}{n-1}} \log L + \frac{C^{\frac{n}{n-1}}}{L^{\frac{n}{n-1}}} + C^{\frac{n}{n-1}} \left(L_{\epsilon}\right)^{n} \log^{n} L_{\epsilon}\right) \right] \qquad (22)$$

We now set

$$L = -\log \in; \tag{23}$$

then $L_{\in} \to 0$ as $\in \to 0$. We then need to prove that there exists $C = C(\in)$ which solves equation (19). We set

$$f(t) = -\infty_n t^{\frac{n}{n-1}} - (n-1)(1+1/2+\cdots+1/(n-1)) + \infty_n A + \log \frac{\omega_{n-1}}{n} - \log \epsilon^n + \phi$$

since

$$f\left(\left(-\frac{2}{\infty_n}\log \epsilon^n\right)^{\frac{n}{n-1}}\right) = \log \epsilon^n + o(1) + \phi < 0$$

for \in small, and

$$f\left(\left(-\frac{1}{2\alpha_n}\log e^n\right)^{\frac{n}{n-1}}\right) = -\frac{1}{2}\log e^n + o(1) + \phi > 0$$

for \in small, f has a zero in $f\left(\left(-\frac{1}{2\alpha_n}\log e^n\right)^{\frac{n}{n-1}}\right)$, $f\left(\left(-\frac{2}{\alpha_n}\log e^n\right)^{\frac{n}{n-1}}\right)$. Thus, we defined C, and it satisfies $\alpha_n C^{\frac{n}{n-1}} = -\log e^n + O(1)$.

Therefore, as $\in \rightarrow 0$, we have

$$\frac{\log L}{C^{\frac{n}{n-1}}} \to 0,$$

and then

$$(L_{\epsilon})^n C^{n+\frac{n}{n-1}} \log L + C^{\frac{n}{n-1}} L^{\frac{-n}{n-1}} + C^{\frac{n}{n-1}} (L_{\epsilon})^n \log^n L_{\epsilon} \to 0.$$

Therefore, (i), (ii), (iii) hold and we can conclude from (22) that for $\in > 0$ sufficiently small

$$\int_{B_{L_{\epsilon}}} \Phi\left(\infty_n \ u_{\epsilon}^{\frac{n}{n-1}} \right) dx > \frac{\omega_{n-1}}{n} e^{\alpha_n A + 1 + 1/2 + \dots + 1/(n-1)}.$$

Definition (2.2) (Li and Ruf, 2000). To define the test function 2, we construct, for n > 2, functions u_{ϵ} such that

$$\int_{R^{n}} \Phi \left(\infty_{n} \left(\frac{u_{\epsilon}}{\|u_{\epsilon}\|_{H^{1,n}}} \right)^{\frac{n}{n-1}} \right) dx > \frac{\infty_{n}^{n-1}}{(n-1)!},$$

for \in > 0 sufficiently small.

Let
$$\in$$
ⁿ = $e^{-\alpha_n c^{\frac{n}{n-1}}}$, and

$$u_{\epsilon} = \begin{cases} c & |x| < L_{\epsilon} \\ \frac{-n \log \frac{x}{L}}{\alpha_{n} c^{\frac{1}{n-1}}} & L_{\epsilon} \le |x| \le L \\ 0 & L \le |x| \stackrel{\epsilon}{\circlearrowleft}, \end{cases}$$

where L is a function of \in which will be defined later.

We have

$$\int_{\mathbb{R}^n} \left| \nabla u_{\in} \right|^n = 1,$$

and

$$\int_{R^n} u_{\in}^n dx = \frac{\omega_{n-1}}{n} c^n (L_{\in})^n + \frac{\omega_{n-1} n^n L^n}{\infty_n^n c^{\frac{n}{n-1}}} \int_{c}^{1} r^{n-1} \log^n r \, dr.$$

Then

$$\int_{R^{n}} \Phi\left(\infty_{n} \left(\frac{u_{\epsilon}}{\|u_{\epsilon}\|_{H^{1,n}}}\right)^{\frac{n}{n-1}}\right) dx \ge \frac{\infty_{n}^{n-1}}{(n-1)!} \frac{\int_{R^{n}} u_{\epsilon}^{n} dx}{1 + \int_{R^{n}} u_{\epsilon}^{n} dx} + \frac{\infty_{n}^{n-1}}{n!} \frac{\int_{R^{n} \setminus B_{L_{\epsilon}}} u_{\epsilon}^{\frac{n^{2}}{n-1}}}{\left(1 + \int_{R^{n}} u_{\epsilon}^{n} dx\right)^{\frac{n}{n-1}}} dx$$

$$= \frac{\infty_{n}^{n-1}}{(n-1)!} - \frac{\infty_{n}^{n-1}}{(n-1)!} \frac{1}{1 + \frac{\omega_{n-1}}{n} c^{n} (L_{\epsilon}) + \frac{\omega_{n-1} n^{n} L^{n}}{\infty_{n}^{n} c^{\frac{n}{n-1}}} \int_{\epsilon}^{1} r^{n-1} \log^{n} r \, dx}$$

$$= \frac{\infty^{n}}{n!} \frac{\omega_{n-1}L^{n} / c^{\frac{n^{2}}{(n-1)^{2}} \int_{\epsilon}^{1} r^{n-1} \log^{\frac{n^{2}}{n-1}} r}{\left(1 + \frac{\omega_{n-1}}{n} c^{n} \left(L_{\epsilon}\right)^{n} + \frac{\omega_{n-1}n^{n} L^{n}}{\infty_{n}^{n} c^{\frac{n}{n-1}}} \int_{\epsilon}^{1} r^{n-1} \log^{n} r \, dx\right)^{\frac{n}{n-1}}}{\sum_{k=1}^{n} c^{n} \left(L_{k}\right)^{n} + \frac{\omega_{n-1}n^{n} L^{n}}{\sum_{k=1}^{n} c^{\frac{n}{n-1}}} \int_{\epsilon}^{1} r^{n-1} \log^{n} r \, dx\right)^{\frac{n}{n-1}}}.$$

We now ask that L satisfies

$$\frac{c^{\frac{n}{n-1}}}{L^n} \to 0, \text{ as } \in \to 0.$$
 (24)

Then, for \in > 0 sufficiently small, we have

$$-\frac{\infty_{n}^{n-1}}{(n-1)!} \frac{1}{1 + \frac{\omega_{n-1}}{n} c^{n} (L_{\epsilon}) + \frac{\omega_{n-1} n^{n} L^{n}}{\infty_{n}^{n} c^{\frac{n}{n-1}}} \int_{\epsilon}^{1} r^{n-1} \log^{n} r \, dx}$$

$$+\frac{\infty^{n}}{n!}\frac{\omega_{n-1}L^{n}/c^{\frac{n^{2}}{(n-1)^{2}}}\int_{\epsilon}^{1}r^{n-1}\log^{\frac{n^{2}}{n-1}}r}{\left(1+\frac{\omega_{n-1}}{n}c^{n}(L_{\epsilon})^{n}+\frac{\omega_{n-1}n^{n}L^{n}}{\infty_{n}^{n}c^{\frac{n}{n-1}}}\int_{\epsilon}^{1}r^{n-1}\log^{n}r\,dx\right)^{\frac{n}{n-1}}}$$

$$\geq B_1 L^{n-\frac{n^2}{n-1}} - B_2 \frac{c^{\frac{n}{n-1}}}{L^n}$$

$$= \left(\frac{c^{\frac{n}{n-1}}}{L_{i}^{n}} B_{1} \frac{L^{2n-\frac{n^{2}}{n-1}}}{c^{\frac{n}{n-1}}} - B_{2}\right),$$

where B_1, B_2 are positive constants.

When n > 2, we may choose $L = bc^{\frac{1}{n-2}}$; then, for b sufficiently large, we have

$$B_1 \frac{L^{\frac{n}{n-1}(n-2)}}{C^{\frac{n}{n-1}}} - B_2 = B_1 b^{\frac{n}{n-1}(n-1)} - B_2 > 0,$$

And (24) holds. Thus, we have proved that for $\in > 0$ sufficiently small

$$\int_{R^{n}} \Phi \left(\infty_{n} \left(\frac{u_{\epsilon}}{\|u_{\epsilon}\|_{H^{1,n}}} \right)^{\frac{n}{n-1}} \right) dx > \frac{\infty_{n}^{n-1}}{(n-1)!}.$$

Corollary (2.3) (Shawgy and Mahgoub, 2011): Prove that for = > 0

$$\int_{R^n} \Phi(u_{\epsilon})^{n/n-1} dx > \frac{1}{(n-1)!}.$$

Proof: For $k = \in > 0$ Results (5.1.8)(ii) implies that $\|u_{\epsilon}\| < \frac{\alpha}{\beta^{\frac{n}{n-1}}}$. If

 $u_{\in} \to u \in H^{1,n}(\mathbb{R}^n)$ with $\|u\|_{H^{1,n}(\mathbb{R}^n)} = 1$, we have for $\alpha_n \to \alpha$ that $\beta < \alpha^{\frac{n}{n-1}}$. Therefore

$$\int_{\mathbb{R}^n} \Phi\left(\infty_n \left(\frac{u_{\epsilon}}{\|u_{\epsilon}\|_{H^{1,n}}}\right)^{\frac{n}{n-1}}\right) dx = \int_{\mathbb{R}^n} \Phi\left(\alpha u \in \int_{n-1}^{\infty} dx > \frac{\alpha_n^{n-1}}{(n-1)!} = \frac{\alpha^{n-1}}{(n-1)!} > \frac{\beta}{(n-1)!}.$$

Hence
$$\int_{\mathbb{R}^n} \Phi(u_{\epsilon})^{\nu_{n-1}} dx > \frac{1}{(n-1)!}$$
.

References

- Ruf ,B. (2005). A sharp Trudinger- Moser type inequality for unbounded domains in \mathbb{R}^2 . J. Funct. Anal. Vol. 219. No. 2, pp. 340-367.
- Adams, D. R. (1988). A sharp inequality of J. Moser for higher order derivatives. Ann of Math. Vol. 128, pp.385-398.
- Dibendetto, E. (1983). $C^{1,\infty}$ local regularity of weak solution of degenerate elliptic equations. Nonlinear analysis. Vol. 7. pp. 827-850.
- Moser, J. (1971), A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. Vol. 20, pp. 1077-1092.
- Carleson, L., S,Chang Y. A. (1986). On the existence of an extremal for an inequality of J. Moser. Bull. Des Science. Vol. 110, pp. 113- 127.
- Fontana, L. (1993). Sharp borderline Sobolev inequalities on compact Riemannian manifolds. Comm. Helv. Math. Vol. 68. pp. 415- 454.
- Jodeit ,M. (1972). An inequality for indefinite integral of a function in L^q . Studia Math. Vol. 44, pp. 545-554.
- Flucher, M. (1992). Extremal functions for Moser-Trudinger inequality in 2 dimensions. Comment. Math. Helv. Vol. 67. pp. 471-497.
- Tolksdorf ,P. (1984). Regularity for a more general class of quasi-linear elliptic equations. J. D. E. Vol. 51. pp. 126-150.
- Adachi, S.; Tanaka K. (1999). Trudinger type inequalities in \mathbb{R}^N and their best exponents. American Math. Society. Vol. 128. No. 7, pp. 2051-2057.

- Pohozaev, S. I. (1965). The Sobolev embedding in the case pl = n. Proceedings of the Technical Scientific Conference on Advances of Scientific Research 1964.
- Shawgy Hussein and Mahgoub Elawad ,(2011). Ph.D Thesis, Sudan University of science and Technology.
- Li ,Y. (2005). The extremal functions for Moser- Trudinger inequality on compact Riemannian manifolds. Science China. Vol. 48. pp. 618- 648.
- Li ,Y. (2001). Moser-Trudinger inequality on manifold of dimension two. J. Partial Differential Equations. Vol. 14. No. 2. pp. 163-192.
- Li ,Y.; Ruf B., (2000). A sharp Trudinger- Moser type inequality for unbounded domains in \mathbb{R}^n . Mathematics subject class-fication.