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Abstract
The Trudinger- Moser inequality states that for functions u € H"(Q), of bounded domain Q

with I|V uldx <1 one has lim J'B @™ ~1)dx < c|Q , with c independent of u. It is shown

k—>+o0
that for n=2 the bound c|Q| may be replaced by a uniform constant d independent of Q if
the Drichlet norm is replaced by the Sobolev norm.In this paper the results for n>2 have been
showed with a lower bound and gradient estimate.
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Introduction

Let H'"(Q), Q< R", be the usual Sobolev space. i.e. the completion of C;*(Q2) with the norm

1
ol = ] (VU7 +[uf” i

It is well-known that

pn

HP(Q)cL""(Q) if 1<p<n

HIP(Q)cL*(Q) if n<p
The case p=n is the limit case of these embeddings and it is known that

HIP(Q)c L'(Q) for n<g<+w

0

When Q is a bounded domain, we usually use the Drichlet norm uf | =

1
QVU|n dxﬁ in place of | - | .. . In this case we have the famous Trudinger-Moser inequality (see [11],

[4], [9]) for the limit case p =n which states that
su em‘u‘% _1 y = C(Q OC) < 400 When oc < OCn (1)
HUHDEI o T =40 when o>,

1
where «c=n @, and o, , is the measure of unit sphere in R".The Trudinger- Moser result has

n-1 1
been extended to sphere of higher order and Sobolev spaces over compact fields (see [7], [13]).
Moreover, for any bounded €, the constant ¢(€2,oc) can be attained. For the attainability, we refer

to[8], [5], [13] and (Li, 2001).

Another interesting extension of (1) is to construct Trudinger-Moser type inequalities on
unbounded domains. When n=2, this has been done in (Ruf, 2005). On the other hand, for

unbounded domain in R".
Let

il

The result in (Li and Ruf, 2000) says that
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Theorem C. For any oce (0,0, ) there is a constant C(cc) such that

[ O{HVJL'JM deC(oc)M, for ueH"R'M\o}. ()
)

ol VUl o)

We shall discuss the critical case cc = oc, . More precisely, we prove the following:

Theorem (1.1) (Adachi and Tanaka, 1999). There exists a constant d >1, such that, for any

domain QcR",

sup ng)(ocn |u|nnljdx£ d. (3)

U () ulin o

The inequality is sharp: for any oc > oc, the supremum is +oo.

We set

s= s ncl)(ocn |u|nn—1jdx.

ueh " (R Jul, 1o o)
Further, we will prove:

Theorem (1.2) (Ruf, 2005).S is attained. In other words, we can find a functionu H"”(R”),

WITH |u]| (Rn):l such that

Hl‘n
s, cp(ocn |u|nn—1jdx.

The second part of Theorem (1.2) is trivial. Given any fixed oc > oc_, we take S € (cc,,c). By (1)
we can find a positive sequence { u, } in
{u E Hé'”(Bl):jB Vu['dx =1 }

such that

lim [e”*" = +o0.

k—-+o0 JB;
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By Lion's Lemma, we getu, = 0. Then by compact embedding theorem, we may assume

”uk”LP(BI) — 0 forany p>1. Then,jRn ([Vuk|rl +|uk|n) dx —1, and

n
uk n—1 %
“UwLmJ s

When k is sufficiently large. So, we get

; Uy - ; ﬁuk"%‘ _ —
lim RncI>(oc£ ] )dxzkILerBl (e 1) dx = +co0.

o el

The first part of Theorem (1.1) and Theorem (1.2) will be proved by blow up analysis. We will use

the ideas from [14] and (Li, 2005). However, in the unbounded case we do not obtain the strong

convergence of u, in L' (R“), and so we have more techniques.
Concretely we will find positive and symmetric functions u, € H 1'”(BRk) which satisfy
IBRk (]Vuk| +|u| )dx —1
and
CD(ﬂkuk"‘]dx: sup CI)[,Bk |v|nn—1]dx.
‘[BRk J.Bnk QVV\" +v" ):1,VEH(')’" (BRk ).[BRk

Here, 5, is an increasing sequence tending to oc,, and R, is an increasing sequence tending to
+o00.

Further, u, satisfies the following equation

1
: - Louro\ B
~divjvu, " vu, +u :Qﬁk—k)

A

where A, is Lagrange multiplier.

Then, there are two possibilities. If ¢, =maxu, is bounded from above, then it is easy to see that
n n-1,.n n n-1,.n
i 2 | P Yty =l e
kILrEoJ.R”(CD(ﬂkUk j (n—l)!JdX_ J.R"[q{ock ! j (n—1)! ax,
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n
where u is the weak limit of ¢, =maxu, . It then follows that eitherj.ﬂ CD[,Bkuk”lex converges to

n n-1
J‘nq)(ocn u"lex or S< 1 _
R

(n—1)

If ¢, is not bounded, the key point of the proof is to show that
n il o

_lﬁkcliH (uk (rkx)_ Cy ) —-N Iog[l +c,! ] ,

n —

€
e

locally for a suitably chosen sequence r, ( and withc, = (%j 1 ), and that
n

1
¢ 'u, > G,

On anyQ cc R"\ {0}, where G is some Green function.

In section (5.2), we will construct a function sequence u_ such that

n
— a, . _
J‘Rn (D(ocn Unljdx> :]_1 e o At141/24+1/(n-1)

when e is sufficiently small. And also, we construct, for n> 2, a function sequence u_ such that

for e sufficiently small

) e
Ian)[“nU 1]dx> (n—l)!'

Thus, together with Ruff’s result of attainability in [14] for the case n =2, we will get Theorem
(1.2).

Definition (1.3) (Li and Ruf, 2000). To define the maximizing sequence, let {R, } be an increasing

sequence which diverges to infinity, and {Bk} an increasing sequence which converges to «,,. By

compactness, we can find positive functions u e H'"(B, ) with L (]Vuk|" + |uk|”) dx=1 such that

Lofaufoc wp [ of i o

J.BRk QVV‘” +v" ):1 veH" (BRk )
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Moreover, we may assume Ln d{ﬂkuk”n‘]dx: IBRk q)([)’kuk”n‘jdx IS increasing.
Lemma (1.4) (Li and Ruf, 2000). Let u, as above. Then

(a) u, is a maximizing sequence for S ;

(b) u, may be chosen to be radially symmetric and decreasing.

Proof. (a) Let 7 be a cut-off function which is 1 on B, and 0 on R"\B,. Then given any

peH"(R") with [ (Ve[ +|f")dx=1, we have

()=, [ Vﬂ(%)(ﬂ n 77(8(0

Hence, for a fixed L and R, >2L

LL [ | ()I"‘]dx j [ ﬂT((EL);”p”l]dxgjBchp(ﬂkuknnlex

By the Levi Lemma, we then have

ot po{nd

Then, letting L — +o0, we get

J‘Rn d{ocn| @ |”1] dx< lim Ln d){ﬂkuk“lj dx

Hence, we get

lim | @ 5 u“—lex = sup nd)[ocn |v|nnljdx.
ko0 [ K J' QVV\ A" ):1V€H (BRK)J.R

(b) Let u; be the radial rearrangement of u, , then we have

@] ( Maxs [, (

It is well-known that 7, =1 if and only if u, is radial. Since

+

2
]dx—ﬂ, as L — +oo.

‘n+u§1 jdx:l.
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LRk {07 Jax = fBRk Q(ﬂkuk“nl de ,

we have
JBRk q)(ﬂk (%ﬁ}dxz J.Bak (D[ﬂkufrll]dx ,

And "=" holds if and only if z, =1. Hence 7, =1 and

w )dx.

V

IBRk @(ﬁku:ﬁ)dx = sup IBRk CD(ocn

J.R” QVV‘”+‘V‘” )=l,veH[1)*" (BRk )
So, we can assume u, =Uu,(|x|), and u,(r) is decreasing

Assume now U, =U. Then, to prove Theorem (1.1) and Theorem (1.2), we only need to show that

n n
klirﬂo . @[ﬂkuk“}dx :IRH d)(ocn uk'”de.

Definition (1.5) (Li and Ruf, 2000). By the definition of u, , we have the equation

b n
Uk"‘@'(ﬂkuk"" J
—divjvu, [V, +ul =

A

, (4)
where 4, is the constant satisfying
A :_[B up-2 d)[ﬂkuk"—ljdx .

First, we need the following:

Lemma (1.6) (Li and Ruf, 2000). irgf A, >0.

Proof. Assume 4, — 0. Then

[ uf dx schnukniz CD’[ﬂkuk”n—lexg Cl —0.

Since u, ([x|) is decreasing, we have uf (L)B, |< _[BL uy <1, and then

TN(BESLSY (5)

ol

89



Mahgoub Elawad Mohammed Ahmed /Nile Journal for Sciences and Engineering, Vol. 01, NO. 02 (2024) 82-111

set e=—'—. Thenu, (x)<e forany x ¢ B, , and hence, we have, using the form of &, that

o,L

_ o= .
A = Ln\BL db(ﬁkuk ]dx <C fRn\BL“k dx<CA, —0.

And on B_, sinceu, — 0 in L*(B, ) for any q>1, we have by Lebesgue

Jim | d)(ﬂkuk“lex < klirﬂo[ . Cup-! d)’(ﬂkuk”‘]dﬁ LXEBL:Uk(X)Q} d)(ﬂkuk’”de]
< limCA, + | ®(0)dx =0

This is impossible. O

Results(1.7) (Shawgy and Mahgoub, 2011): (i) Definition (1.5) and results (2.8) implies that if

we set v, =X and go(z): Z, then we have

LU Yt
CD(Bk |uk nl):epkuk ]

(ii) Theorem (1.2) shows that

n
uk n-1 %
“mem] ZAu

_n_
n-1

a G

a
lu, or ful< 7 .

If u, —>ueH"(R") with |u], ..., =1 then B<a’.

Hl,n(Rn)
(iii) If ¢, = Max u,, where u is the weak limit of ¢, = Max u,, it follows that

B
MY

We denote ¢, =maxu, =U,(0). Then we have

lug] . n>1.

Lemma (1.8) (Li and Ruf, 2000). If supc, <+,
k

(i) Theorem (5.1.1) holds;

(i) if S is not attained, then
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n-1
oC
S<——"n

(n—1)"

Proof. If supc, <+, then u, - U in CI‘OC(R”). By (5), we are able to find L st u,(x)<e for
k

X¢ B, . Then

2 n2

) By, ) ”, [
[ (d{ﬂkuk"-l)—k Jax <CfuidxsCert [ updxsCe

(n-1)
Letting e— 0, we get

n% Bn—lun B ni— OC271 u"
J.R"\BL (d)(ﬂkuk IJ_—(;—IS] )dx _IR”\BL (CD(ocn u IJ_—(n—l)! )dx .

Hence

) o o o _ o
kILrEo-[R”\BL d{ﬂkuknl]dx :J'Rn CD[ocn u;l]dﬁm kILrEO . (uk -u )dx.

When u =0, we can denote from (6) that

n-1
n

S< )
(n—1)!
Now, we assume u = 0. Set

) jnu{jdx
"= lim f—,
k—>+oo.[ undx
R

By the Levi Lemma, we have 7 >1.
Let U= u(é). Then, we have

Ln |VU|"dX= J.Rn |Vu|"dx£ lim IRH|Vuk|"dx,

k—+o0

and

[ andx= "] undx= lim [ uidx.
R" R" k R"

—>+0

Then

Joo (v + 2 Jax< tim [ (jvu,]"+

k—+o0

Uy

n]dx:l.

Hence, we have by (6)
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ZURHCD(@“ Un]}m(ﬁ_lyw(,;%z;‘)!dxh(fn-lm(@(mn o

- Ilm J-R”\BL (D[ﬂkulynl]dx +(Tn _I)J.R" (D(OC” Uﬁ)_ (noinl)l dX

K—>+o0

=S+(c" —1)jRn [CD(OC” Uﬁ)_ (“Oinl)JdX

n-1

Since CID(oc'n u*‘) T _yn >0, we have 7 =1, and then

-1
S= _[ (oc U"‘)

So, u is an extremal function.

From now on, we assume C, — +oo. We perform blow up procedure:

Cknjeﬂkci?j

By (5) we can find a sufficiently L such that u, <1 on R"\B_. Then
I ‘V( —u,( l dx<1,
and hence by (1), we have

[e
B

Clearly, for any p <oc, we can find a constant C(p), such that

oy (UK*UK(L)+X%

<C(L).

n

pu <ec, |u, —u, (L) | +C(p),

and then, we get
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Lff P dx<C =C(L, p).

Hence

n
e

k _&Cl?%l - o o
ArE T =e 2 [J'Rn\BLukrH (D’(ﬂkui:’l)dx-l- J'BL q)’(,Bkuk"*‘)dx]

ﬂkq?l &UQI
SCIRn\ ucdxe 27 +| e?  uMdx.

Begp
Since u, convergesin L%(B,) forany q>1,weget 4 <Ce2 * and hence

r<Ce 2 .

Now, we set

v () =u, (rx), w,(x)= _:Bkcnll( v, —C,),

n_
where v, and w, are defined on Q, ={XG R":r.xeB, }. Using the definition of " and (4) we

have
; n-2 Vi n L A e e nAn
—divivw, " v, =5 (2 g ) e v ¢ +O(rk ck).
In [9], we know that 0sC; W, < C(R) forany R > 0. Then from the result in (Dibendetto, 1983) (or

[8]), it follows that w |, | < C(R). Therefore w, converges in C/,,and v, —¢, =0 in C,,.

since

BRI A |

we get B, —ci ) w in Gl , and so we have
—divivul" v = ( rr'lcfn e, ()
with

w(0)=0=max w.
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Since w is radially symmetric and decreasing, it is easy to see that (7) has only one solution. We
can check that

x*‘) and J'Rn e"dx=1,

w(x)=-n Iog(l +C,

/AN
where ¢, = (— )a-i. Then,
n
o
o ur s : W
lim lim| ——e”™% dx= Ilmj' e'dx=1. (8)
Lo+ k—+o0 JBy, ﬂ’k L—>+o0 JR"

For A>1, let u} = min{u,,%}. We have

Lemma (1.9) (Li and Ruf, 2000). For any A>1, there holds

Ilmsupj (‘Vuk‘ +‘uk‘ jdx<lA 9)

K—>+o0

Proof. Since ‘{x Uy 2 A}‘

c_k”J'
AS{U

}uk <1, we can find a sequence p, — 0 such that

C
{x:u, ZXK}C B,
Since U, converges in L"(Bl) forany p>1, we have

lim

k—+w0 {u

‘dx< Ilm.[ uk”dx 0.

k—+0

and

. \+
lim || (uk —%) uf dx=0

k—+o0

forany p>0.

Hence, testing equation 4 with (uk - °—k)+ : we have

Cy 1

_ Vk_ik Vk_i -1 aWeto(l)
_LL ckA( ckA+l) te"eUdx + o(1).
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Hence
.. + |1 + A—] w
Cy Cx n-1
Ilmigf R(V(uk—f)‘ +(uk—f) Uy jdsz 5 © dx.
Letting L — +oo, we get
s a ) " c |7y - A-1
liminf R(V(uk—f) +(uk—f) uy ‘jdsz.

Now, observe that

_[Rn(Vuf‘n +‘u,f‘njdx: I—IR (‘V(uk —%)+

Jouss)

n
ukA‘ dx

<1-(1-1)+o(1).

Hence, we get this Lemma
Corollary (1.10) (Li and Ruf, 2000). We have

J‘R"\B(; (]Vuk“huﬁ)dx: 0,
forany 6 >0, and then u=0.

Proof. Letting A — +o, then for any constant ¢, we have

J{u <C}QVU£‘ + ul? )dX —0.

So, we get this Corollary.

Lemma (1.11) (Li and Ruf, 2000). We have

im [, o(gu Jdx < Tim lim ' —1) dx=limsup2-.  (10)

K —+o0 L—>+00 kK—+0 K —> 400 Cﬁ
k

and consequently

A , and sup S <o, (11)
Cy k k
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Proof. We have

JoolgutJos [ olautoef,olauton <] olauJareat 2

cy
e cp@uk"‘)

Applying (5), we can find L such that u, <1 on R"\B_. Then by Corollary (1.11) and the form

of @, we have

im [, . o(pp, (ut)™ Jx< lmc(p)f,  wdx=0 (12)

k—>+00

forany p>0.

Since by Lemma (1.10) limsup _[Rn [‘Vuk‘\‘n +‘UkA‘njdX$ lA <1, it follows from (1) that
k—+0

supj' eP Al -u L P gy o0
k vBL

forany p'< A™ . Since for any p<p’

pluf i <p ((uk’* ~u, (L) +c(p, p’)],

we have

SlipJ-BL Cb(ﬂk (u,f)E )dx < 40 (13)

forany p< A" . Then on B, , by the weak compactness of Banach space, we get
kllrpoo 5 ( n')dx _[ 0)dx=0.

Hence, we have

li CD(,B *‘) = lim lim A" ﬂ“j u" q)(ﬁu“)dx+C = lim A" X st +C
kLrPOO B. kuk dx = L—>+00k—>+00 C”' k™k pum €"

K—+0 n-1
Ck

As A—1 and €— 0, we obtain (10).
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n
ol
If was bounded or sup k
Ck

= +o0, it would follow from (10) that

vﬁ)dx:o.

sup CD(ocn
[ (vu" " Ferver) (8, )IBRk

Which is impossible.

1
n-1

u
Lemma (1.12) (Carleson and Chang, 1986). We have that ¢, —

kuf‘) converges to 9,

weakly, i.e. foranyp e D(R“)

lim pc, U’ kuk"%l)dx:(p(o).

k—+o0

Proof. Suppose supp ¢ < B,,. We split the integral

Ckuk

@(ﬂu;')dx I boshe, +J.B|_,k+»|.uk<°k =11+

We have
Uﬁ 4 = Wy +o0
l, < Alg].. JR“\BLW icp (ﬂkukn—l)dx = A||¢>||CO(1 _IB? (l)dX),
and
I, = jBL(p(rkx)Ck(Ck f: =G guotigy = o 0)f, e"dx+o(1)=p(0)+o(1)
k

By (12) and (13) we have
[, @ps, ui 1™ Jox<c

forany p< A™ . We set 7+t =1. Then we get by (11)

N ®(ﬂuk“')dx< ol

Letting L — 4o, we deduce now that

5l
ek‘k —0.

C(l

1(r")

L9(r")

K—+0

im [ ¢ ﬂkl o'(gug Jax=(0)
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1

Proposition (1.13) (Li and Ruf, 2000). On any Q cc R"\{0}, we have that ¢['u, converges to

G in C'(Q), where G e C(R"\ {0}) satisfies the following equation

loc

~difVG|" VG +G™ =§,. (14)

1

Proof. We set U, =c'u,, which satisfy by (4) the equations:
1

~divivU, | VU +U]" = Ck‘;k—knqu(ﬂkukn“l). (15)

For our purpose, we need to prove

J, Wil'dx<C(a.R),

where C(q, R) does not depend on k. We use the idea in [80] to prove this statement.
Set Q, ={0<U, <t},U} =min{U, ,t}. Then we have

1

J. (VU + 0, Jax< [ (FuiaL, +UUE)= [ UL Ckl/i—‘?ld)'(ﬁkulgn')s 2.

k

Let 7 be a radially symmetric cut-off function which is 1 on B; and 0 on Bj;. Then,

k.

Then, when t is bigger than M we have

C.R)
k.

Set p such that U, (p)=t. Then we have

ViU 'dx<C,(R)+C, (R

VU] dx<2C,(R).

inf{J.B Vv'dx:ve Hy"(B,e) and vlg =t}<2C, (R}

ik

On the other hand, the inf is achieved by —tlog 2R/Iog% . By a direct computation, we have

L <2R,
log 2% )"
and hence for anyt > w
C,(R)
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freB iU, 2t)-[B, <C R

where A(R) is a constant only depending on R . Then, foranyo < A,

o - m+1 =
e rdx < m<U <m+1 ) <

1+2(U, U, (R))

1_(Uk _Uk(R))+ ’

Then, testing the equation (15) with the function log we get
VU, [

N VRN ) (PR Y

o, L+2U, -V, (R)
S|092J‘BR%(D,(ﬂkulzl )dX‘LRUk log 1+—(£J Y k((R);+ He
k k

Given g <n, by Young's inequality, we have

J- |VU |q dX<J [ |vuk|n
oK e LU0, U, RN+ 20, —2U, (R))

dx-+((1+U, 142U, )i ]

VU, |’

< dx+Ce’Y* |dx.
IBR (1+U, -U,(R)\1+2U, —2U, (R)) x+Ce™™ Jux

Hence, we are able to assume that U, converges to a function G weakly in H”’(BR) for any R

and p<n.Applying Lemma (1.12), we get (14).

Hence U, is bounded in L%(Q2) for anyq > 0. By Corollary (1.10) and Theorem C, e is also

bounded in L*(€2) for any g > 0. Then applying [9], and [8](or [5] ), we get|U, ,<C.SoU,

clx

converges to G inC'(Q).

For the Green function G we have the following result.

Lemma (1.14) (Li and Ruf, 2000).G e C“‘(R \{o }) and near 0 we can write

loc

G=-—

! logr"+ A+ O(rn log" r)

n

here, A is a constant. Moreover, for any ¢ >0, we have
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i n
veiu,

kILrECIRn\BJ( +(ck"1‘uk)njdx f QVG| +(G )dx
= G(5)(t - jB G"‘ldx).

Proof. Slightly modifying the proof in [14], we can prove

G :—ilog r"+A+o(l).
oC

n

One can see [26] for details. Further, testing the equation (15) with 1, we get

@, Gy =] vel™ aa_ﬁ :l_js9n‘ldx= 1+0(r"log™"' r).
Then we get (16).
We have
_[Rn\B ug @ (ﬂ "‘) dx < CI uk dx—0. (17)

Recall thatU, e Hé*”(BRk ) By equation (15) we get

ou,

IR”\35QVUK|H+U;)dX_ A I u;‘d)(ﬂuk"l)dx I |VUk|n U dsS.
By (17) and (11) we then get

im [, (vu."+u;)dx = lim nk|vuk|”‘2ukds

kK —>+o0 k—>-+o0 JOB

=-G(5) j

s on

- G(5)(1 - jBS;“dxj.

We are now in the position to complete the proof of Theorem (1.1): We have seen in (12) that

J.R“\Bﬁ q)(ﬂkukn%l)dXSC :

So, we only need to prove on B,

S

j P dx < C..
BR

The classical Trudinger-Moser inequality implies that
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| Al ® T gy < c —C(R).
Br

T
Ck

By Proposition (1.14), u,(R)= O( L j , and hence we have

n

0 < (0, ~u,R) +u,RP < (0, ~uR) i+,

then, we get

_[ AU dx < C'.
Br

To proof Proposition (1.16), we will use a result of Carleson and Chang (see [12]:

Lemma (1.15) (Li and Ruf, 2000). Let B be the unit ball inR". Assume thatu, is a sequence in

H;"(B) with | [VU,["dx=1. Ifu, —0, then

|ImSUp J‘B (eocﬂuknl _ 1) dX < |B|e1+1/2+»-~+1/(n—1)l

k—>+o0

Then, we get the following:

Proposition (1.16) (Li and Ruf, 2000). If S cannot be attained, then

OCn—l
S > min n eocnA+1+1/2+~~+1/(n—1) .

(n—1)!
(U, (x)-u, (8))

k
Vu,

Proof. Set uy = which is in H,"(B, ). Then by the result of Carleson and Chang,

L"(8;)

we have

Iimsup I eﬂk”,knfl < |B§|el+1/2+...+1/(n,1).
k —-+o0 Bs

By Lemma (1.15), We have
J.Rn\B& UVCQIIUK n + (ck"%‘uk T)dx - G(5)(1 —IBE;"-ldx) ,

and therefore, we get

J.B& Vu,|" dx= I_J.R“\B(; (]Vuk|n +ufj)dx _.[35 uy dle_w, (18)
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where lim lim €,=0.

50 k—>+o

By (12) in Lemma (1.11) we have

lim lim g/t =‘B

L—+oo k—>+0 JB,\B p‘ !

forany p <& . Furthermore, on B we have by (18)
(u;)% < Ui — —ulgn‘[l+ nl 1 G(a)Jrfk (5)+O( ln D
(1_ G(5)+nek (5)J B Ck

C -1
cr

o

=3

Then we have

lim lim e dx<0(57) lim lim " dx—|B,|0(5™).

L+ k—+0 JB\B L—+o0 k—>+0 JB,\By,

sinceu, —0 on B;\B,, we get

(e”4" ~1)dx=0,

m |
k—+o JBs\B,

then

0< lim lim s ~1)dx<|B,[0(5™").

Lo+ k—>+0 JBs\B,

Letting p — 0, we get

lim lim (e —1)dx=0.
Lo+ k—>+0 JBs\BL,
So we have
lim lim (A4 —1)dx < e V2B |,

Lo+ k—>+0 JBs\B,

Now, we fix an L. Then for any x € B, , we have

o u n n 1
By :ﬂk(m)nl(I85 |Vuk| dx)”*l
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- AU+ ﬁ) (], [V o

(using that u, (6)=0(— 1 ) .
¢ ¢

1

= AU+ (6)+O(—

= f U (1+“k('5)+o( ! ))n”{ (5)+ek( )]nl

u, ct

n uk(5)_ 1 (5)"'€k() [

n-1 u n-1 ol

:ﬂku;ﬁ {H

It is easy to check that

WX 1 and (o (500, (5) > G(6).

Ck
So, we get

.. o .. . i

lim lim (e’ —1)dx= lim lim e "G(‘S)j (e”% —1)dx
Lo+oo kot JB, L—>+00 k—>+00 By

< e*nG((S)é‘n Wy < e1+1/2+---+1/(n71)

n

_ eocn (—%nlog 5"+A+O(5” log" 6))5n @, e1+1/2+...+1/(n,1)'

n
letting 0 — 0, then the above inequality together with Lemma (1.8) imply Proposition (1.16).
1. The test functions

Definition (2.1) (Li and Ruf, 2000). We will construct a function sequence {ue}c H 1’”(R”) with

=1 which satisfies

e Hl‘n

J. ol b

for e> 0 sufficiently small.
Let

)dX > @, _ 1eA+1+1/2+ +1/(n-1)
n H
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(n—l)log( n:"”‘)+Ae
C- — X <L
ue _ a:n Cnfl
%IXD x> L.
Cnfl

where A ,C and L are functions of e (which will be defined later, by (19), (20), (21)) which
satisfy

(i)L = +0,C —>+oc and L_— 0, as e 0;

(i)c - (n—l)log(1+clnL"n‘)+ A
oc, C™

. Iog
(iii) o

We use the normalization of u_to obtain information on A_,C and L. we have
J' ([Vue "
R™MB,_
n-2 0G

=—j G(L VG| s

)d x=—= (_[BLE VG dx+jBEE G"dx)

G(LE)—G(LE) Gdx

= C“L Iog(1+c L“‘)+O( Lnli:nl )
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2By (n-1) + nlog(1+c L”1)+O( L)

(xn Cm (xn n-1 Ln ICnl
where we used the fact

2Cr (- 1 1

; S _1+5+---+m.
It is easy to check that
Jo, vu. (LyciogL)
and thus we get
jRn(j €"+u2)dx = r';ln{—(n—1)(1+1/2+1/3+---+1/(n—1))+oc
oC n-1

+(n —l)log(l + anﬁ)— log(L.)+¢},

where
g=0l(L.yc logL+ (L. )V log" L + L),

Setting IR([ ik +u2)dx:1 , we obtain

n

-1
oc, C =—(n=1)1+1/2+--+1/(n=1)}+oc, A+ logglJrC—LLL—logen +¢

=—(n=1)1+1/2++1/(n=1)Hoc, A+ Iog%— log €" +4. (19)
By (ii) we have

oc, C* —(n —1)|og(1+cn Lﬁ)+ A == G(L.)

and hence

—(n=1)1+1/2+-+1/(n=1)Hoc, A=log(L.)" + @+ A =c G(L_);
this implies that
A =—(n-1)1+1/2++1/(n-1))+4¢. (20)

Next, we compute IB e 1 dix
Le
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Clearly, go(t)= |1—t|ﬁ +L1t Is increasing when 0 <t <1and decreasing whent <0, then
n —

1=t >1-—"t, whenlt|<1.
n-1
Thus we have by (ii), for any x € B,_

(n—l)log(1+cn gﬁ)
oc, c™

_n_ n_
n-1 —, n-1 —
oc n ue = n C 1

>oc, Cﬁ(l—

n (n- 1)Iog(1+c| |+A€)) 1)
n-1 oc, Cm g

Then we have

n
n__ X[n-1 L
P nlog[H—cn‘e‘ ] nflAE

emn‘uem*]dxz J. e“nc dx
B

—e" N o (1roL))

=%eA+1+1/2+.--+1/(n1)+O(( )C”IogL+( ) Iog |_ + L )

Here, we used the fact

e L

~m-k-1 m+1

Then
jB d)(ocn uf)dx> r”]le(’cn’*””/2+ +/(n-1) +O(( L.)'C"logL+(L_)" log" L.+ L™ )
.

Moreover, on R" \ B, we have the estimate
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T 2—1 G n
'[R”\BLg (D(Ocn e )dxz (:—1)! J'R”\BJ C(?(I)I ¥

and thus, we get

n @, _ oy Atl1/24-+1/(n-1) ocn_l |G‘(X)|n
jBLE (D(ocn u_ )dx Z%e At fze i * (nil)! J‘R"\BLE| CH dx
+0[(L.y'C logL+(L_) log" L.+ L)
:&ean+l+I/2+m+l/(n—l) .|.—OC271 Gl(x ndX
n (h-1)c™ J.RH\BJ )

+O((LE)"C”+”"' IogL+%+C”n'(L€)nlog” Lej } (22)

We now set
L=-loge; (23)
then L. — 0 as e— 0. We then need to prove that there exists C = C(e) which solves equation
(19). We set
f(t)=—oc, t7 —(n=1)\1+1/2+--+1/(n—1)} oc, A+log 2L —log " +,
n
since
i ((—% log e”)ﬁ): log €" +o(1)+¢ <0

for e small, and

f((—ﬁlog e”)ﬁ)z —%Iog e" +o(1)+¢>0

for e small, fhasazeroin f ((—2% log e”)ﬁ), f ((—mi log e”ﬁ). Thus, we defined C, and it satisfies
o, C™" =—log " +0(1).
Therefore, as e— 0, we have

logL

——0,
Cnfl

and then

(L)C™ ™ logL+C™ L™ +C™ (L)' log" L_ — 0.
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Therefore, (i), (ii),(iii) hold and we can conclude from (22) that for e> 0 sufficiently small

j (D(OC u =y )dX > —n=L e ocy A+1+1/2++1/(n-1) .
B'—e n

Definition (2.2) (Li and Ruf, 2000). To define the test function 2, we construct, for n>2,
functions u_such that

Inq)[ocn(j—ew) de>(n l)'

for e> O sufficiently small.

n

Let €"=e ™" and

c X < L.

ue — M |_e < |X| <L
oc, C™
0 LS|X|,

where L is a function of € which will be defined later.

We have
and
nl
I u’ dx—— "(LE)”+& r"'log" rdr.
m Cnl <
Then

dx

n— n n— ut
@ oc, (1 ""le S L L En IR"‘B% o
J.R” [OC ( ) Xz (n 1 1+I u’ dx n! (1+..'Rn UQdXF

oc, oc, 1

- _ ngnl
(n 1)| (n l)l n lc (L )+ a)n—lnLL J.rn—llognrdx

N ~na
o, Cc

€
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2
n” o n?

o, "¢ I“‘Iog”‘r

n

— (X: €
T - o
(1+ %1 e (L) nn I r""log” rdx )
n 2 c Y
We now ask that L satisfies
o
T —0,as €—>0. (24)

Then, for e> 0 sufficiently small, we have

ot 1
S _
(n 1)'1+%c”(Le)+7a)‘1n L r"*log" r dx
n Ocn Cnl -

n? 2

n

1
o, L" /¢ I "log"'r

n

oc
+ 1 n n 1
n! 1) @, N n_
(1+ 50t e™(L ) + e = I r""log” r dx )
n o ¢t
n e
NS
ZBlL ”‘1—82 -
L
n LG—%
CI'I] -
_( Bl N Bz)f
L Cn—l

where B,, B, are positive constants.

1

When n > 2, we may choose L =bc™?; then, for b sufficiently large, we have

And (24) holds. Thus, we have proved that for > 0 sufficiently small

.[HCD[ocn (EU—EHM) ]dx> (-1}

Corollary (2.3) (Shawgy and Mahgoub, 2011): Prove that for €> 0

J'Rn d(u )™ dx > -
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Proof: For k=e>0 Results (5.1.8)(ii) implies that

u

<

€

o
ﬂ%—]

u —ue H“‘(R”) with ||u||Hm(Rn) =1, we have for a, — « that 8 <a’™. Therefore

_ n-1
n-1 a

o (e Y |dx= auefrdx> % - > P
Inq’[n% )]d S (= i e i oy

€ H],n

Vs
Hence | @(u.) dx>m.
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