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Abstract

In this paper some topics in topological groupshas beendiscussed, and the compact spaces and
compactifications of topological groups were stated.Firstly, many definitions have been statedand
followed by many examples of topological groups, some theorems have been included which are
propositions and lemmas as well asthe locally compact abelian topological groupswere
discussed.Secondly, the paper included a compactification of topological groups and prove some theorem
and some propositions concern this topic.
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Introduction

The topology science is very important science, it has many efficient in mathematical field, and it
is entering in many sciences, like physics and engineering. The important topics in topology
science, are topological spaces, topological groups and compactness, which play a very important
part in pure mathematics. Every group, can be made into a topological group, imposing the discrete
topology on it. The topological groups have many parts, like abelian topological groups and non-
abelian topological groups and topological transformation groups. The compactness and
compactifications are very important in topology science, because they are referring to topological
spaces and topological groups, they can be described as the maximal ideal spaces of certain
functions algebras.

1. Topological groups
In this paper, we discuss some definitions and some examples of topological groups, and we state
some theorems, lemmas and some propositions on topological groups. In the last section,

someexplanations about locally compact abelian topological groups, with refer to [1],[3] and [5].

2.1 Definitions

The definitions below are included in [1] and [3].

Definition (2.1.1): A topological group is a triple (G,t), where (G,) isa group and 7 is a topology
on G such that, the function f: G X G - Gdefined byf (x,y) = x.y~! for x,y € G is continuous.

Here G X G is viewed as a topological space by using the product topology. It is common to

require that the topology on G be Hausdorff.

Definition (2.1.2):We say that (G, X,t) is a topological group if (G, X) is a group and (G,t) is a
topological space such that, writing M(x,y) = x X y and Jx = x~! the multiplication map m :

G? - G and the inversion map J: G — G are continuous.

Definition (2.1.3): Let G be atopological group, and let a € G , then:
i. Themap L(a):G - G :x — ax iscalled a left translation.

ii. Themap R(a):G — G : x — xa is called a right translation.
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Proposition (2.1.4): Let G be atopological space, which is also a group, then G is a topological
group if and only if:

i. Theset {e} isclosed.
ii. Forall a € G the translations R(a) and L(a) are continuous.

iii.  The mappingG X G — G : (x,y) - xy~1 is continuous at the point(e, e).

Definition (2.1.5):If (G,X; ,7;) and (G,Xy ,ty) are topological groups, we say that, 6:G —

His an isomorphism if it is a group isomorphism and a topological homeomorphism.

Lemma (2.1.6): let Ube neighborhood ofe in a topological group G, then there exists a
neighborhoodv of e suchthat vc U andv =v~! and wvv =wvv~! < U. We shall call such

a neighborhood v of e symmetric.

Definition (2.1.7): A local group is a Hausdorff space N such that:
i.  There is a binary operation in N, (x,y) = xy which is defined for certain pairs (x,y) €
N XN .
ii.  The operation is associative.
iii. Thereexists e € N ,thusforall x e N ,xe =ex=x .
iv.  There exists an inverse operationin N,X > X 1:xxt1=x"1x=e¢ .

v. Themaps (x,y) - xy and x - x~! are continuous.

Definition (2.1.8):
i. The local groups N and N’ are topologically isomorphic if there exists a
homeomorphism f: N - N’ : x = f(x) , such that the product xy is defined in N if and
only if the product f(x)f(y) isdefinedin N’, andin this case f(xy) = f(x)f (y).
ii.  The topological groups G and G’ are locally isomorphic, they have open nuclei which is

local group, are topologically isomorphic.
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Definition (2.1.9): Topological space M isa T, — space , if for any given pair of distinct points

X,y € M, there exists an open set U of M, which contains one of the points, but not the other.

Definition (2.1.10): A T, — topological group is a group G which is T, — space, and such that,

themap, G X G - G : (x,y) » xy~1, is continuous.

Definition (2.1.11): A topological space M isa T; — space if for distinct points x # y in M,

there exists an open set V with y €V but x € V.

Definition (2.1.12): Let M a Hausdorff topological space, and let G be a topological
group, then:

i. G operates on M if there is, a surjection G XM - M : (g,p) = g.p Such that
(9192).-p = 91-(g2.p), and  e-p=p forallg;,g, €G and p € M where e is
identity of G.

ii. G operates transitivelyon M , if forevery p,q € M, there exists g € GSuchthat g-p =
q.

iii. G operates continuouslyon M ,ifthemap G XM — M : (g,p) — g.p is continuous.
iv. G s called a topological transformation group on M, if G operates Continuously on
M.

V. G iseffectiveif a-p =p, forall p € M emplies a = e.

vi. Let p be fixed in M, thenG(p) ={g€G:g-p=p}isagroup called the isotropy
subgroup of G at p. Theset G-p={g € G : g-p = p}, is called an orbit under G.

Definition (2.1.13): A homogenous space M is a space with a transitive group action by Lie
group action implies that there is only one group orbit, M is isomorphic to quotient space G/H,

where H is the isotropy group G.

2.2 Examples
Example (2.2.1): Examples of abelian topological groups
Before we state the examples, we assert that; every group can made into a topological imposing

the discrete topology on it. Here are some important examples of an abelian topological groups:

1. All Euclidean spaces under the usual additional, are abelian topological groups.
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2. The non-zero real numbers, or the non-zero complex numbers under multipli-cation form
an abelian topological group.
3. All topological vector spaces, such as Banach spaces, or Hilbert spaces are abelian
topological groups.
4. Let X be aspace and H(X), is the group of all homeomorphisms of X . If Xis locally
compact and regular, then H(X), becomes an abelian topological group under composition.
5. If {Gi:i€l} isa collection of topological groups, the product space [];e; G, can be
made into topological group under co-ordinate wise multiplication.
6. Let H asubgroup of atopological group G and G/His the space of right cosets ofH in
G then, if H is anormal subgroup of G ,then G/H is atopological group.
Examples (2.2.2): of non-abelian topological groups
All examples and properties below are in (Arther and Ralph, 1973).
Consider the subgroup of rotations of R3, generated by two rotations by irrational of multiplies of
2m about different axes.
All the above examples are Lie groups (topological groups that are also manifolds).
An example of a topological group which is not Lie group is given by the rational numbers Q ,this

a countable space, and it does not have the discrete topology.

2.3 Properties:

1 If a isanelement of a topological group G,then left or right multiplication with ayields a
homeomorphismG — G, thus can be usedto show that all topological groups are actually
uniform spaces. Every topological group can be viewed as a uniform space in two ways, the
left uniformly turns all left multiplication into uniformly continuous maps, while the right
uniformly turns all right multiplication into uniformly continuous maps. If G is not abelian,
these two need not coincide.

2 As a uniform space, every topological group is completely regular. It follows that if a
topological group is T, (i.e. Kolmogorov),then itis already T, (i.e. Hausdorff).

3 The most natural notion of homeomorphism between topological groups is that of a continuous
group homeomorphism. Topological groups, together with continuous group homeomorphisms

as morphemes, form a category.
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4 If H is anormal subgroup of the topological group G, then, the factor group G/H becomes
a topological group by using the quotient topology (the finest topology onG /Hwhich makes
the natural projection G — G/H continuous).

5 The algebraic and topological structures of a topological group interact in non-trivial ways, for
example, in any topological group the connected component containing the identity element, is
a normal subgroup.

2.4 Subgroups and nuclei

Definition (2.4.1): Let G be a topological group, and let H be a subset of G such that, HH™ c

H ,then H isasubgroup of G .( Arther and Ralph, 1973)

Corollary (2.4.2): Let H be a closed normal subgroup of the topological groupG and G/H isa

quotient, then G/H becomes a topological group such that the projection m: G — G/H isan open

continuous homeomorphism. (Arther and Ralph, 1973)

Definition (2.4.3) (Arther and Ralph, 1973): Let G be atopological group, then the centerC of
G equals {x € G : xa = ax V a € G}. The center is a normal subgroup of G,and is also denoted
by Z(G). (Arther and Ralph, 1973)

Definition (2.4.4): Discrete subgroups of Euclidean spaces under usual additional are known as
Lattices. (see [1])

Definition (2.4.5): Let (G,X,T) be atopological group, and H a subgroup of G: (Torner, 2003)
i.  The topological closure H of H is a subgroup.

il. If H isnormal,sois H.

iii. If H contains an open set, then H is open.
iv. If H isopen,then H is closed.

v. If H isclosed and of finite index in G , then His open.

Lemma (2.4.6) : Let (G,X,T) be a Hausdorff topological group, if H is a closed normal
subgroup, then G/H is Hausdorff. (see [1])

Lemma (2.4.7): Let (G,X,T) be atopological group, then I = {e} is a closed normal subgroup.
(see [1])
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Definition (2.4.8) : If G is a topological group, the connected component of identity e € G
is called the identity component of G, and is denoted by G, , and G,is closed normal subgroup of

G , and the connected component c(a) of a € G equals aG,. (Arther and Ralph, 1973)

Definition (2.4.9): A subset of atopological groupG ,which contains an open neighborhood of the

identity e, is called a nucleus of G. (Arther and Ralph, 1973)

Proposition (2.4.10): let V' be the family of all nucleus of a topological group G, then V satisfies:
(see [1])

. vy,v, €V implies vy N v; EV

ii. v, €VZand v; cW cG impliesW €V;

iii. Foranyw, €V, thereexists v™! € V suchthat vv~! € vy;

iv. IfveVandaegG,thenvteV;

v. v in{viveV}={e}
2.5 Locally compact abelian topological groups
Let A be an abelian group, thus A is a set equipped with a binary operation + , which is
commutative and associative, there is identity element 0 € A4, suchthat 0 + a = a forall a € 4,
and each a € A has an inverse —a , characterized by a + —a = 0, as a basic examples, the
integers, real numbers and complex numbers are abelian groups under addition, and for each

positive number n we have the integers modulo n, a cyclic group with n elements.

Let us also assume that A is a topological space, which is to say that certain subsets of A are
designated as open subsets. As usual one required that the empty setand A itself are open subsets
of A, that the intersection of any finite collection of open subsets is an open subset, and that the
union of any collection of open sets, is an open subset. Once the open subsets are selected, the

closed subsets are defined to be the complements in A of the open subsets.

Various standard notions, such as continuity at a point of a mapping between two topological

spaces, can be defined in terms of the open subsets through standard methods.

Tosay that A is atopological group, means that the group structure and topo-logy are compactible
in a natural way. Specifically, the group operation + should be continuous as a mapping from
A X A into A, and a = —a, should be continuous as a mapping from A to it self. This implicitly
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uses the product topology onA x A is open if it is the union of products of open subsets of A. Itis
customary to require that A be a Hausdorff topological space, which is equivalent in this setting

to the requirement that {0} be a closed subset of A.

In any topological space a subset K is said to be compact if every open covering of K in the
space admits a finite sub covering, i.e., if for every family{U;};c; of open subsets of the topological

space such that:

(DK C Uiy

There is a finite collection i,,---,i;0f indices in I such that:
(DK < Uju, - uU.

A topological space is said to be locally compact if for each point x in the space, there is an open

subset W and a compact subset K of the space such that:
(i)x e W C K.

A locally compact abelian topological group is an abelian topological group which is locally

compact as a topological space.

Of course, local compactness at the identity element e implies local compact-ness at every point

because group translations define homeomorphism.

As in (3), it is simpler to say “LCA group” in place of locally compact abelian topological group.
The integers modulon are natural examples of LCA groupequipped with their discrete topologies,
in which every subset is considered to be open. For the real and complex numbers, one can use
their standard topologies, indeed by the usual Euclidean metrics, to get LCA group. One can also
consider the nonzero complex numbers using multiplication as the group operation and the usual
topology. If one takes the complex numbers with modulus 1 using multiplication as thegroup

operation and the usual topology, one gets acompact LCA group.

Fix an integer n > 2, and consider the group consisting of sequences x = {xj};il such that each

of themis aninteger suchthat 0 < x; <n—1, and the sum of two elements x,y inthe group

A is defined by adding each term modulo n . If x isan element of the group andi is a positive
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integer, then the ith standard neighborhood aroundx is defined to be the set of y in the group
such that x; = y;,then 1 <j <. This leads to a topology on the space in which a sub set of the
group is open, if for each point x which is contained in the subset. Well known results in topology
imply that this space is compact with respect to this topology, and in fact it is homeomorphic to the

cantor set.

It is easy to see that this example defines a compact LCA group. Namely, the group operations are
continuous with respect to the topology just defined. This is a nice example where the topological
dimension is equal to e ,which isto say that the space is totally disconnected, with no connected

subsets with at least two elements. As the same time the topology is not the discrete topology.

Let A be a LCA group. A basic object of interest associated to A is translation-invariant integral,
which is alinear mapping from the vector space of complex-valued continuous functions as f(x)
on A with compact support into the complex number such that the integral of f(x + a) is equal
to the integral of f(x) for all a € A, the integral of a real valued function is a real number, the
integral of a non-negative real number, and the integral of f is positive, if f is a non-negative
real valued continuous function on A with compact support such that f(x) > 0 for some x €
A . In the examples described earlier such that an integral can be defined explicitly, in terms of
sums, classical Riemann integrals, or simple generalizations of Riemann integrals for the spaces
of sequences modulo n . A general theorem states that any LCA groupA an invariant integral, and

that this integral is unique except for multiplying it by a positive real number.

Let A be an abelian group. By a character on A we mean a continuous group homeomorphism
from A into the group of complex numbers with modulus | with respect to multiplication.
Sometimes one may wish to consider unbounded characters more generally, which are continuous
homeomorphisms fromA into the non-zero complex numbers with respect to multiplication. Note
that any bounded subgroup of the nonzero complex numbers with respect to multiplication is
contained in the complex numbers with modulus | as one can easily verify. Thus, a bounded,
continuous homeomorphism from A into the group of nonzero complex numbers is a character, and
in particular every continuous homeomorphism from A into nonzero complex numbers is a

character when A is compact.
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If f(x)is a complex valued continuous function on A with compact support, or an integrable
function more generally, one can define its Fourier transformation f(@)by saying that if @ is a
character on A, then f(®)is the integral of f times the complex numbers conjugate of @ , using
a fixed invariant integral on A as discussed previously. If A is not compact, then one can extend
this to a Fourier — Laplace transform by allowing unbounded characters, at least when f has
compact support or sufficient integrality properties. For bounded character one has the usual

inequality which states that |£(@)| is less than or equal to the integral of |f] .

Many classical a sects of Fourier analysis work in this setting. A basis point is that the Fourier
transform diagonalizes translation operator, which means that if a € A and f(x) is continuous

function on the group with compact support, or an integrable function on the group, then the Fourier

transform of f(x — a)at the character @ is equal to @(a) times as Fourier transform of
f(x)at @ . One can also define convolution in the usual way, @using the invariant integral on
A, and the Fourier transform of a convolution is equal to the product of the corresponding Fourier

transforms.

3 Topologicalgroups’ compactificationsintroduction

Every topological group G has some natural compactifications. They can bedescribed as the
maximal ideal spaces of certain functions algebras, or as the Samuel compactifications for certain
uniformities on G , some compactifications of G carry an algebraic structure, and may be useful

for studying the group G itself.

We consider, in particular, the following constructions: the greatest ambit S(G) and the universal
minimal compactG-space Mg (sections 2 and 3); e Roelcke compactifications R(G) ( section 4
) ; the weakly almost periodic compactifications W (G)( section 5). In the last case the canonical
map G — W(G) need not be an embedding. In section 6, we discuss the group of isometrics

of the Urysohn universal metric space u, all these topics are included in [4] and [5].

3.2 Greatest ambit S(G)
Let G be atopological group, the Banach space B = RUCP(G) of all right uniformly continuous
bounded complex functions on G is a C*—algebra, and G acts on B by C* —

algebra automorphisms. Let S(G)be the compact maximal ideal space of B . It is the least
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compactifications of G over which all functions from B can extended. The topological group of

all C* —algebra

automorphisms of B is naturally isomorphic toH(S(G)) . It follows that G acts on S(G), and

the natural homeomorphismG — H(S(G)) is a topological embedding.

The space S(G) can also be described as the Samuel compactifications of the uniform space
(G,R) , here R is the right uniformity on G . The basic entourages for R are of the form
{(x,y) €G:xy 1€V} ,where V € N(G) . The Samuel compactifications of a uniform space
(x,u) is the completion of x with respect to the finest pre-compact uniformity which coarser

than u .

We shall consider G as dense subspace of S(G). The action G X S(G) — S(G) extends the

multiplication G X G - G .

A G — space is atopological space X with a continuous action of G ,thatis,amap G X X - X
satisfying g(hx) = (gh)x and ix =x,(gh€G,x€X).A G—map isamap f:X->Y
between G — spaces such thatf(gx) = gf(x) forallx € X,g € G . The G — spacesS(G) has
distinguished point e ( the unity ), and the pair (5(G),e) has the following universal property :
for every compact G — space X and every p € X there exists a unique G —map f: S(G) = X
suchthat f(e) = p . Indeed, the mapg —» gp from G to X is R — uniformly continuous and

hence can be extended over S(G).

Theorem (3.2.1) : For every topological group G the greatest ambit X = S(G) has a natural
structure of a left topological semi group with a unity such that the multiplication X X X —

X extends the action ¢ X X —» X .

Proof

Let x,y € X such that n,(e) =y. Define xy = r,(x). Let us verify that the multiplication
(x,y) — xy has the required properties. For a fixed y the map x — xy is equal to ry and hence
is continuous. If yz € X, the self-mapsr,n, and 1, of X are equal, since both are G — maps
sending e to yz = r,(y). This means the multiplication on nX is associative. The distinguished
element e € X isthe unity of X : we have =r,(x) =x.If g € G and x € X, the expression

gx can be understood in two ways: in the sense of exterior action of G on X as a product in X.To
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see that these two meanings agree, note that r,.(g) = .(ge) = gr(e) = gx (the exterior action

IS meant in the last two terms; the equality holds since r,, isa G — map .

3.3 Universal minimal compact G — space
Definition (3.3.1):A G — space is minimal if it has no properG — invariant closed subset or,

equivalently, if the orbit Gx is dense in X for every x € X.

Lemma (3.3.2) : The Universal minimal compact G — space Mg is characterized by the
following property: M. is minimal compact G — space and for every compact minimal G —

space X there existsa G —map of Mg onto X.

Since Zorn's lemma implies that every compact G — space has a minimal compact G —
subspace, it follows that for every compact G — space X, minimal or not, there exists a G —

map of M; to X.

Lemma (3.3.3):The existence of M; is easy: take for M; any minimal closed G —
subspace of S(G) universal property of (S(G),e) implies the correspond-ding universal
property of M, . It is also true that M, is unique, in the sense that any two Universal minimal

compactsG — spaces are isomorphic.

Proposition (3.3.4):If f:X > X is a G —self —mapand a = f(e)then f =1,.

Proof: We have f(x) = f(xe) = x(f(e)) = xa = r,(x) and hence for all x € X.

A subset I c X is a left ideal if XI c I. Closed G — subspaces of X are the same as closed left
ideals ofX . An elementx of asemi group is an idempotent if x? = x . Every closed G —subspace

of X, being aleft ideal, is moreover a left topological compact and hence contains an idempotent.

Theorem (3.3.5): Every non-empty compact left topological semi group K contains an idempotent.
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Proof: Zorn's lemma implies that there exists a minimal element Y in the set of all closed non-
empty sub semi groups of K .Fix a € Y . We claim that a® = a(and hence Y is a sigleton).
The setYa , being aclosed semi group ofY . It follows that the closed sub semi group Z =
{x €Y : xa = a} isnon-empty. Hence Z =Y and xa = a for every x € Y. It particular, a? =

a.

Let M be a minimal closed left ideal of X . We have just proved that there an idempotent P € M.
Since XP is closed left ideal contained in M, we have XP = M. It follows that xp =
x forevery x € M. The G —map r, : X - Mdefined byRp(X) = XP isaretraction of x onto
M .

Proposition (3.3.6):Every G — mapf : M - M has the formf(x) = xy forsome y € M.
Proof: The composition h = frp: X - M isa G —map of X into itself, hence it has the form
h =1, ,wherey = h(e) € M (Proposition 3.3.1). Since 7, T M =Id,wehave f =hTM =
rn, T M.

Proposition (3.3.7):Every G — mapf : M — M is bijective.

Proof: According to Proposition (3.3.6), there is a € M such that f(x) = xa for all x € M.
Since Ma is a closed left ideal of X contained in M , we have Ma = M by the minimality of M .
Thus there exists b € M such that ba = p.Let everyg : M — M be the G — map defined by
g(x) = xb. Then fg(x) = xba = xb = x for every x € M, and therefore fg = I (the identity
map of M ). We have proved that in the semi group S of all G —self —map of M, every
element has a right inverse. Hence S is a group (alternatively, we first deduce from the equality f
g=1 that all elements of S are surjective and then, applying thisto g , we see that f is also

injective.)

Theorem (3.3.8):For every topological group G the action of G on the universal minimal compact

G — space M is not 3-transitive.

For example, if K is a compact manifold of dimension> 1, or a compact Menger manifold and
G = H(K),then M(G) # K , since the action of G on K is 3-transitive.

It would be interesting to understand what is M (G) in this case.

124



Mahgoub Elawad Mohammed Ahmed /Nile Journal for Sciences and Engineering, Vol. 01, NO. 02 (2024)112-134

Let P be the pseudo arc (= the unique hereditarily indecomposable chainable continuum) and
G = H(P). The action of G on P is transitive but not 2-transitive, and the following question

remain open:
Let P the pseudo arcand G = H(P).Can M, be identified with P ?

Question (3.3.9): Let G be abelian topological group. Suppose that G has no non-trivial

continuous characters X : G = T. Is G extremely amenable.

For cyclic group the question can be reformulated as follows: Let K be a compact space, and let
f € H(K) be a fixed-point free homeomorphism of K . Let G be the cyclic subgroup of H(K)
generated by f . Does there exists a complex number a such that |a| =1, a # 1, and the

homeomorphism X : G — T defined by X(f™) = a™ is continuous.

If K is a circle, the answer is yes: for every orientation-preserving homeomorphismf of a circle,
the rotation number is defined which gives rise to a non-trivial continuous character on the group

generated by f .

A positive answer to question (3.3.9) would imply the solution of the problem: Is it true that for
every big set S of integers, the set S — S contains a neighborhood of zero for Bohr topology on Z
? A set S of integers is said to be big (or syndetic) if S + F = Z for some finite F c Z; this means
that the gaps between consecutive terms ofS are uniformly bounded. The Bohr topology onZ
generated by all characters X : Z — T . It is known that for every big subset S € Z the S—S +

S contains a Bohr neighborhood of zero.

Extremely amenable groups can be characterized in terms of big sets. A subset S of a topological

group G is big on the left, or left syndetic, if FS = G for some finite F c G.

Theorem (3.3.10): A topological groupGis extremely amenable if and only if whenever S c G

is big on the left, SS~1 isdensein G.

Theorem (3.3.11): Atopological group G is extremely amenable if and only if for every bounded
left uniformly continuous function f from G to a finite dimensional Euclidean space, every &€ > 0

, and every finite (orcompact)K c G there exists g € G such that diameter f(gk) < €.
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3.4 Roelcke Compactifications

Definition (3.4.1): For a topological groupGlet R(G) be the maximal ideal of the C* — algebra
of all bounded complex functions on G which are both left and right uniformly continuous. The
space R(G) is the Samuel compactifications of theuniform space(G, #AR) , where £ is the left
uniformly on G, R is the rightuniformly, and #AR is the Roelcke uniformly on G , the greatest

lower bound of £ and R . We call R(G) Roelcke compactifications of G .

Lemma (3.4.2): While the greatest lower bound of two compactible uniformities on a topological
space in general need not be compatible, the Roelcke uniformity is compatible with the topology
of G . The covers of the form {UxU : x € G,U € N(G)}, constitute a base of uniform covers of

Roelcke uniformity.

If G isabelian, (G) = S(G) . In general,R(G) is a —space , and the identity map of G extends
toa G —map S(G) —» R(G).

Definition (3.4.3): The group G is precompact if one of the following equivalent properties holds:
i. (G,L) isprecompact.
ii.  (G,R) is precompact.

iii. G isasubgroup of a compact group.

It can be shown that G is precompact if and only if G for everyneighborhood U of unity, there
exists a finite F c G such that G = FUF . Let us say that G is Roelcke precompact if the
Roelcke uniformity #AR is precompact. This exists a finite F < G suchthat G = F U F. There
are many non-abelian non-precompact groups which are Roelcke compactifications. For example,
the symmetric group symm (E) of all permutations of a discrete space E , or the unitary group
U(H) , on a Hilbert space H , equipped with the strong operator topology, are Roelcke
precompact. The Roelcke compactifications of these groups can be explicitly described with the

aid of the following construction:

Suppose that G acts on a compact space K.For g € G,let r(g) € K? be the graph of the
g — shift x > gx. The map g - I'(g) from G to Exp K? is both left and right uniform
continuous (if the compact space Exp K? is equipped with its unique compactible uniformity),

hence it extendstoamap f, : R(G) — Exp K2. Ifthe actionof G on K istopologically faithful,
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the map f, often happens to be an embedding in which case R(G) can be identified with the
closure of the set {I'(g):g € G} in Exp K? . For example, this the case if K = S(G)or K =
R(G).

The space Exp K2 is the space of all closed relations on K. It has a rich structure, since relations
can be composed, reversed, or compared by induction. This structure is party inherited by R(G) .

Let us consider some examples.

Example (3.4.4): Let G = symm(E) be the topological symmetric group. It acts on the compact

cubeK = 2F . The natural mapf, : R(G) — Exp K?in an embedding.

Example (3.4.5): Let Gbe the unitary groupU(H) , of a Hilbert spaceH , equipped with the strong
operator topology (this is the topology of point wise convergence inherited from the product H*
). Let K bethe unitball of H . Equip K with the weak topology. Then K is compact. The unitary
group G actson K ,andthe map R(G) — Exp K? is an embedding.

The space R(G) has a better description in this case : R(G) can be identified with the unit ball
6 in Banach algebra B(H) of all bounded linear operators on H. The topology on @ is the weak
operator topology: the map A — A/K which assigns to every operator of norm < 1 its restriction
to K is a homeomorphic embedding of 6 into the compact space KX .Thus R(G) has a

natural structure of semi topological semi group.

Example (3.4.6): Let K be a zero-dimensional compact space such that all non-empty clopen
subsets of K are homeomorphic to K . Let G = H(K) , the natural map f; : R(G) —» Exp K?
is an embedding. Moreover, the image of f; , which is the closure of the set of all graphs of self-
homeomorphisms of K , isthe set 6 of all closed relations on K whose domain and range are
equal to K . Thus R(G) can be identified with 6.

This time R(G) is an ordered semi group, but not a semi topological semi group, since the
composition of relations is not a separately continuous operation. As in the pervious example, one
can use the space R(G) to prove that G is minimal. Moreover, every non-constant onto group
homeomorphism f : G — H isanisomorphism of topological groups. To prove this, we proceed
as before extend fto f:G — H and look at the kernel S = F~1(e,) . Zorn’s lemma implies

the existence of maximal idempotent in S(with respect to the inclusion). Symmetric idempotent
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above the unity (= the identity relation = the diagonal of K2 )in @are precisely closed equivalence

relations on K . Since there are no non-trivial choices for S either S = {1} or S=10.

Example (3.4.7): Let G = H,(1)be the group of all orientation-preserving homeomorphisms
of the closed interval I =[0,1]. The map f; : R(G) - Exp I? is a homeomorphic embedding.
Thus R(G) can be identified with the closure of the set of all graphs of strictly increasing
functions h:I — 1 such h(0) =0 and h(1) =1.

This closure consists of all curves € c I? which lead from (0,0) to (1,1) and like graphs of

increasing functions, with the exception thatC may include both horizontal and vertical segments.

There seems to be no natural semi group structure on R(G) . This observation leads to an
important result: The group G has no non-trivial homeomorphisms to compact semi topological

semi groups and has no non-trivial representation by isometries in reflective Banach space.

3.5 WAP compactifications
Definitions (3.5.1): Let S a semi group and a topological space. if the multiplication (x,y) —
xy is separately continuous (this means that the maps x — ax and x — xa are continuous for

every a € §), wesaythat S isasemitopological semi group.

For a topological group G let f: G — W(G) Dbe the universal object in the category of
continuous semi group homeomorphisms of G to compact semi-topological semi groups. In
other words, W (G) is a compact semi topological semi group, and for every continuous
homeomorphism g: G - S to a compact semi topological semi groupsS there exists a unique
homeomorphism h: W(G) — S such that g = hf .

The existence of W (G)follows from twofacts: (1) arbitrary products are defined in the category of
compact semi topological semi groups; (2) the cardinality of a compact space has an upper bound
in terms of its density. The space W (G)can also be defined in terms of weakly almost periodic

functions. Recall the definition of such functions.

Let atopological group G actonaspace X . Denote by C?(X) the Banach space of all bounded

complex valued continuous functions on  Xequipped with the supremum norm. A function f €
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Cb(X) is called weakly almost periodic (w.a.p.for short), if the G-orbit off is weakly

relatively compact in the Banach space C?(X) .

In particular, considering the left and right actions of a group G on it self, we can define left and
right weakly almost periodic functions on G . These two notions are actually equivalent, so we can
simply speak about w.a.p. functions on a group G. The space WAP of all w.a.p. functions
onagroup G isaC*— algebra, and the maximal ideal space of this algebra can be identified
with W (G).Thus the algebra WAP is isomorphic to the algebra C(W (G))of continuous functions
on W(G).We call W(G) the weakly almost periodic w.a.p. compacti-fications of the
topological group G .

Remark (3.5.2): We show a compactification of a topological spaceX, we have a compact

Hausdorff space  Ktogether with a continuous mapj : X - K
with a dense range. We do not require that j be a homeomorphic embedding.

For every reflexive Banach space X , there a compact semi topological semi group 6(X)
associated with X : the semi group of all linear operators A : X — X of norm < 1, equipped with
the weak operator topology. Recall that a Banach space X is reflexive if and only if the unit ball
B in X is weakly compact. If X is reflexive, 6(X) is homeomorphic to a closed sub space of

BB(whereB carries the weak topology, and hence compact) .

It turns out that every compact semi topological semi group embeds into 8(X) for some reflexive
X.

Theorem (3.5.3): Every compact semi-topological semi-group is isomorphic to a closed sub semi

group of , 8(X) for some reflexive Banach space.

The group of invertible elements of 8(X) isthe group Is,, (X)of isometries of X, equipped with

the weak operator topology. This topology actually coincides with the strong operator topology.

Theorem (3.5.4): For every reflexive Banach space, the weak and strong operator topologies on

the group Is(X) agree.
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In particular, the group of invertible elements of 6(X) is a topological group. The natural action
of this group on 8(X)is (jointly) continuous. This can be easily deduced from the fact that the
topological group Isg(X*) = Is,,(X™) are canonically isomorphic. In virtue of Theorem (3.5.3),
similar assertions hold true for every compact semi topological semi group S : the groupG of
invertible elements ofSis atopological group, and the map(x, y) — xy isjoint continuouson G x S

. Thus S is a G-space.

It follows for every topological group G the compact semi topological semi group W (G) is a G-
space , hence there exists a G-map S(G) —» W(G) extending the canonical map G — W(G)In
terms of function algebras, this means that every w.a.p. functionon G is right uniformly
continuous , since the algebra WAP is invariant under the inversion on G, w.a.p.

functions are also left uniformly continuous and hence Roelcke uniformly continuous .

It follows that there is a natural map R(G) » W(G) . If G = U(H) is the unitary group of a
Hilbert space H,then R(G) = 6(H) is a compact semi topological semigroup,and therefore
the canonical map R(G) » W(G) is a homeomorphism, thus W(G) = 8(H) .The canonical

mapS(G) - W(G) isahomeomorphism if and only if G is precompact.

In virtue of Theorem (3.5.3) and a (3.5.4), the following two properties are equivalent for every

topological group G :

1. The canonical map G - W(G) is injective.

2. There exists a faithful representation of G by isometries of reflexive Banach space.

Similarly, the canonical map G — W(G) is homeomorphic embedding if and only if G is

isomorphic to a topological sub group of Is(X) for some reflexive Banach space.

Theorem (3.5.5): Let G = H,(I) be the group of all orientation preserving homeomorphisms of

I = [0,1]. Then W(G) is a singleton. Equivalently, every w.a.p. functionon G is constant.
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3.6 The groupIs(U)

Definition (3.6.1): The group’s of Urysohn universal metric space U .

A metric space M is w-homogeneous if every isometry between two finite subsets of M extends
to an isometry of Minto itself. A metric space M is finitely injective f it has the following property:
If K a finite metric space and L < K , then every isometric embedding K — M . The Urysohn
universal space U is the unique complete separable metric space with the following properties: (1)
U contains an isometric copy of any separable metric space; (2) U is w-homogenous.
Equivalently, U is the unique finitely-injective complete separable metric space. The uniqueness
of U is easy: Given two separable finitely injective spaces U, and U, , one can use the “back and
forth” or “shuttle” method to construct an isometry between countable dense subsets of U; and U,

.If U; and U, are complete, they are isometric themselves.

Let G =1Is(U). The group G is a universal topological group with a countable base; every
topological group H with a countable base is isometric to a subgroup of G . The idea of the
proof is first to embed G into Is(M) for separable metric space M and then to embed M

into U insuch a way that every isometry of M has a natural extension to an isometry of U .

Let (X,d) beametric space. We say that a function f : X - R, isKatetov if: |[f(x) — f(y)| <
dx,y) < f(x)+ f(y) forall x,y € X.A function f is katetov if and only if there exists a
metricspace Y = X U {p} containing X as asubspace suchthat f(x) forevery x € X isequal
to the distance between x and p . Let E(X) be the set of all Katetov functionson X , equipped
with the sub-metric. If Y is a non-empty subset of X and f € E(Y), define g = Ky (f) € E(X)
by
g(x) = inf{d(x,y) + f(y):y € Y}

forevery x € X . Itiseasy to check that g is indeed a Katetov function on X and that g extends
f. The map K,:E(Y) - E(X) is an isometric embedding. Let X* = U{K,(E(Y):Y c
X,Y ) is finite and non — empty} c E(X).

For every x € X let h, € E(X) be the function on X defined by h,(y) = d(x,y). Note that

hy = K;1(0) and hence h, € X*. Themap x — h, isan isometric embedding of X intoX™

Thus we can identify X with a subspace of X* . If K is a finite metric space, L C
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K and |K/L| = 1,thenevery isometric embedding of L into X can be extended to an isometric

embedding of L into X*.

Every isometry of X has a canonical extension to isometry of X* , and we get an embedding of
topological group Is(X) — Is(X™) . (Note that the natural homeomorphism Is(X) — Is(E (X))
in general need not be continuous). Iterating the construction of X* , we get an increasing
sequence of metric spaces X € X* < X** - ... . Let Y be the union of this sequence, and let Y be
the completion of Y . We have a sequence of embedding of topological group
Is(X) » Is(X*) > E(X™) » E(Y) » E(Y)

The space Y is finitely-injective. Y the completion of a finitely-injective. Assume that X is
separable, then Y is separable, and Y isacomplete separable finitely-injective metric space. Thus

Yis isometricto U, and hence Is(X) is isomorphic to to a topological subgroup of Is(U).

Every topological group G with a countable base is isomorphic to subgroup of Is(X) for some
separable Banach space X : There is a countable subsetA € R U C?(G) which generates the
topology of G , and we can take for X the closed G-invarient linear subspace of R U C?(G)
generated by A . We just saw that Is(X) isomorphic to a subgroup of Is(U) . Thus, we have
proved:

Theorem (3.6.2): Every topological group with a countable base is isomorphic to a topological

subgroup of the group/s(U) .

Note that the group Is(U) is Polish (= separable completely metrizable). Another example of a
universal Polish group is the groupH (G) of all homeomorphisms of the Hilbert cube. To prove that
every topological groupG with a countable base is isomorphic to a subgroup of H(Q), it suffices
to observe that:

1. G isisomorphic to a subgroup of H(K) for some metrizable compact space K.

2. if K is compact and P(K) is the compact space of all probability measures on K, there is a
natural embedding of topological groups H(K) — H(P(K));

3. If Kis an infinite separable metrizable compact space, then P(K) is homeomorphic to the
Hilbert cube. The groups Is(U)and H(Q) are not isomorphic and the group H(Q) is not

extremely amenable, since the natural of H(Q) on Q has no fixed point.
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The group Is(U) is not Roelcke-precompact, to see that, fix a € U and consider the function
g — d(a,g(a)) from Is(U) to R, where d is the metric on U. This function LAR uniformly
continuous and unbounded, hence the Roelcke uniformityLAR is not precompact. We slightly

modify the space U , in order to obtain a Roelcke —precompact group of isometries.

Let U,be the “Urysohn universal metric space in the of spaces of diameter < 1" . This space is
characterized by the following properties:U; is a complete separable w —homogenous metric
space of diameter< 1is isometric to a sub-space ofU; . Let G = Is(U,) . Thisisa universal Polish
group. This group is Roelcke precompact. Let us describe the Roelcke compactifications R(G)
of G.

Consider the compact space K c Y1 of all non-expanding functions f:U; — I = [0,1] . Then K
is a G —space, so there is a natural map from R(G) to the set ExpK? of all closed relations onK

. It turns out this map is homeomorphic embedding.

There is a more geometric description of R(G); it is the space of all metric spaces M of diameter
1, which are covered by two isometric copies of U, . More precisely, consider all triples S =
(M, i,j), where M is a metric spaces M of diameter 1, i: U; - M and j : U; — M are isometric
embeddings, and M = i(U,) U j(U;). Every such triples gives rise to the function P, : U; x U; =
I defined by P;(x,y = d(i(x),j(y)) where d is the metric on M. The set 6 of all functions P, that

arise in this way, is a compact subspace of 1Y+* and R(G) can be identified with 6. Elements of G
correspond to triples (M, i,j) such that M = i(U;) = j(U;).

The space R(G) has a natural structure of an ordered semi group. If R(G) is identified with a
subset of ExpK?, then R(G) happens to be closed under composition of relations, whence the
semi group structure, and the order is just the inclusion. If R(G) is identified with 8 , then the order
is again natural, and the semi group operation is defined as follows: If p,q € 8 , the product of p
and g in 6 isthe function r : U;> - I defined by

r(x,y) =inf({p(x,2) + q(z, y)H V{l}, x,y € U;.

There is a one-to one correspondence between idempotents in R(G) and closed subsets of U; .

Theorem (3.6.3): The universal Polish group Is(U) is minimal.
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Thus, every topological group with countable base is isomorphic to a subgroup of a minimal
Roelcke-precompact Polish group. More generally, every topological group is isomorphic to a

subgroup of a minimal group of the same weight.

Every topological group G is isomorphic to a subgroup of Is(X), whereX is a complete w-
homogenous metric space of diameter 1, which is injective with respect to finite metric spaces of
diameter 1, and for every such X the group Is(U) is Roelcke-precompact and minimal. The
uniqueness of X s lost in the one separable case, and it is not known whether there exists a

universal topological group of a given uncountable weight.

4 Conclusion

We saw that the topological groups divide to many parts, like abelian and non-abelian topological
groups and topological transformation groups, and plays a very important part in pure mathematics.
There are many parts of topological groups’ compactifications, and they may be useful for studying

the group G itself.
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