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Abstract 

In this paper some topics in topological groupshas beendiscussed, and the compact spaces and 

compactifications of topological groups were stated.Firstly, many definitions have been statedand 

followed by many examples of topological groups, some theorems have been included which are 

propositions and lemmas as well asthe locally compact abelian topological groupswere 

discussed.Secondly, the paper included a compactification of topological groups and prove some theorem 

and some propositions concern this topic. 
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Introduction 

The topology science is very important science, it has many efficient in mathematical field, and it 

is entering in many sciences, like physics and engineering. The important topics in topology 

science, are topological spaces, topological groups and compactness, which play a very important 

part in pure mathematics. Every group, can be made into a topological group, imposing the discrete 

topology on it. The topological groups have many parts, like abelian topological groups and non-

abelian topological groups and topological transformation groups. The compactness and 

compactifications are very important in topology science, because they are referring to topological 

spaces and topological groups, they can be described as the maximal ideal spaces of certain 

functions algebras. 

1. Topological groups  

In this paper, we discuss some definitions and some examples of topological groups, and we state 

some theorems, lemmas and some propositions on topological groups. In the last section, 

someexplanations about locally compact abelian topological groups, with refer to [1],[3] and [5]. 

2.1 Definitions 

The definitions below are included in [1] and [3]. 

Definition (2.1.1):  A topological group is a triple (G,𝜏), where (G,) is a group and   𝜏 is a topology 

on G such that, the function 𝑓: 𝐺 × 𝐺 → 𝐺defined by𝑓(𝑥, 𝑦) = 𝑥. 𝑦−1  for  𝑥, 𝑦 ∈ 𝐺  is continuous. 

Here  𝐺 × 𝐺  is viewed as a topological space by using the product topology. It is common to 

require that the topology on 𝐺 be Hausdorff. 

Definition (2.1.2):We say that (G, X,𝜏)  is a topological group if (G, X) is a group and (G,τ) is a 

topological space such that, writing 𝑀(𝑥, 𝑦) = 𝑥 × 𝑦  and 𝐽𝑥 = 𝑥−1 the multiplication map 𝑚 ∶

 𝐺2 → 𝐺 and the inversion map  𝐽: 𝐺 → 𝐺 are continuous. 

Definition (2.1.3):  Let  𝐺   be a topological group, and let  𝑎 ∈ 𝐺 , then: 

i. The map   𝐿(𝑎): 𝐺 → 𝐺 ∶ 𝑥 → 𝑎𝑥  is called a left translation. 

ii. The map  𝑅(𝑎): 𝐺 → 𝐺 ∶ 𝑥 → 𝑥𝑎  is called a right translation. 
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Proposition (2.1.4):  Let   𝐺  be a topological space, which is also a group, then  𝐺 is a topological 

group if and only if: 

i. The set  {𝑒}  is closed.  

ii. For all  𝑎 ∈ 𝐺  the translations  𝑅(𝑎)  and  𝐿(𝑎)  are continuous. 

iii. The mapping𝐺 × 𝐺 → 𝐺 ∶  (𝑥, 𝑦) → 𝑥𝑦−1 is continuous at the point(𝑒, 𝑒). 

Definition (2.1.5):If (G,𝑋𝐺 ,𝜏𝐺)   and (G,𝑋𝐻 ,𝜏𝐻)   are topological groups, we say that,    𝜃: 𝐺 →

𝐻is an isomorphism if it is a group isomorphism and a topological homeomorphism. 

Lemma (2.1.6):  let   𝑈 be neighborhood of𝑒   in a topological group 𝐺,  then there exists a 

neighborhood𝑣  of  𝑒  such that  𝑣 ⊂ 𝑈  and 𝑣 = 𝑣−1  and      𝑣𝑣 = 𝑣𝑣−1  ⊂ 𝑈. We shall call such 

a neighborhood  𝑣  of  𝑒  symmetric. 

Definition (2.1.7):  A local group is a Hausdorff space  𝑁  such that: 

i. There is a binary operation in  𝑁 , (𝑥, 𝑦) → 𝑥𝑦  which is defined for certain pairs (𝑥, 𝑦) ∈

𝑁 × 𝑁 . 

ii. The operation is associative. 

iii. There exists  𝑒 ∈ 𝑁  , thus for all  𝑥 ∈ 𝑁  , 𝑥𝑒 = 𝑒𝑥 = 𝑥  . 

iv. There exists an inverse operation in  𝑁 , 𝑋 → 𝑋−1 ∶ 𝑥𝑥−1 = 𝑥−1𝑥 = 𝑒  . 

v. The maps (𝑥, 𝑦) → 𝑥𝑦   𝑎𝑛𝑑  𝑥 → 𝑥−1   are continuous. 

Definition (2.1.8): 

i. The local groups  𝑁  𝑎𝑛𝑑   𝑁′   are topologically isomorphic if there exists a 

homeomorphism 𝑓: 𝑁 → 𝑁′ ∶ 𝑥 → 𝑓(𝑥) , such that the product  𝑥𝑦  is defined in  𝑁  if and 

only if the product  𝑓(𝑥)𝑓(𝑦)  is defined in  𝑁′, andin this case 𝑓(𝑥𝑦) = 𝑓(𝑥)𝑓(𝑦). 

ii. The topological groups  𝐺 𝑎𝑛𝑑 𝐺′  are locally isomorphic, they have open nuclei which is 

local group, are topologically isomorphic. 
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Definition (2.1.9): Topological space  𝑀  is a  𝑇0 − 𝑠𝑝𝑎𝑐𝑒 , if for any given pair of distinct points 

𝑥, 𝑦 ∈ 𝑀 ,  there exists an open set  𝑈  of  𝑀, which contains one of the points, but not the other. 

Definition (2.1.10):  A  𝑇0 − topological group is a group  𝐺 which is 𝑇0 − 𝑠𝑝𝑎𝑐𝑒, and such that, 

the map,  𝐺 × 𝐺 → 𝐺 ∶  (𝑥, 𝑦) → 𝑥𝑦−1 , is continuous. 

Definition (2.1.11):  A topological space  𝑀  is a  𝑇1 − 𝑠𝑝𝑎𝑐𝑒  if for distinct points  𝑥 ≠ 𝑦  𝑖𝑛  𝑀, 

there exists an open set  𝑉  𝑤𝑖𝑡ℎ  𝑦 ∈ 𝑉  𝑏𝑢𝑡  𝑥 ∈ 𝑉. 

Definition (2.1.12):  Let   𝑀  a  Hausdorff   topological   space, and   let   𝐺    be a topological 

group, then: 

i. 𝐺   operates on   𝑀    if there is, a surjection   𝐺 × 𝑀 → 𝑀 ∶  (𝑔, 𝑝) → 𝑔. 𝑝  Such that 

(𝑔1𝑔2). 𝑝 =  𝑔1. (𝑔2. 𝑝) , and   𝑒 ∙ 𝑝 = 𝑝   for all𝑔1, 𝑔2 ∈ 𝐺  and  𝑝 ∈ 𝑀  where  𝑒  is 

identity of 𝐺. 

ii. 𝐺  operates transitively on  𝑀 , if for every  𝑝, 𝑞 ∈ 𝑀,  there exists  𝑔 ∈ 𝐺Such that  𝑔 ∙ 𝑝 =

𝑞. 

iii. 𝐺  operates continuously on  𝑀 , if the map  𝐺 × 𝑀 → 𝑀 ∶ (𝑔, 𝑝) → 𝑔. 𝑝 is continuous. 

iv. 𝐺   is called a topological transformation group on   𝑀 , if   𝐺   operates Continuously on  

𝑀. 

v. 𝐺  is effective if  𝑎 ∙ 𝑝 = 𝑝,  for all  𝑝 ∈ 𝑀  emplies  𝑎 = 𝑒. 

vi. Let  𝑝  be fixed in  𝑀 , then 𝐺(𝑝) = {𝑔 ∈ 𝐺 ∶ 𝑔 ∙ 𝑝 = 𝑝} is a group called the isotropy 

subgroup of  𝐺  at  𝑝. The set   𝐺 ∙ 𝑝 = {𝑔 ∈ 𝐺 ∶ 𝑔 ∙ 𝑝 = 𝑝},  is called an orbit under 𝐺. 

Definition (2.1.13):  A homogenous space   𝑀   is a space with a transitive group action by Lie 

group action implies that there is only one group orbit,  𝑀  is isomorphic to quotient space  𝐺 𝐻⁄ , 

where 𝐻 is the isotropy group  𝐺. 

2.2 Examples  

Example (2.2.1): Examples of abelian topological groups 

Before we state the examples, we assert that; every group can made into a topological imposing   

the   discrete   topology on it. Here are some important examples of an abelian topological groups: 

1. All Euclidean spaces under the usual additional, are abelian topological groups. 
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2. The non-zero real numbers, or the non-zero complex numbers under multipli-cation form 

an abelian topological group. 

3. All topological vector spaces, such as Banach spaces, or Hilbert spaces are abelian 

topological groups. 

4. Let  𝑋  be a space and  𝐻(𝑋), is the group of all homeomorphisms of  𝑋 . If  𝑋is locally 

compact and regular, then  𝐻(𝑋), becomes an abelian topological group under composition. 

5. If   {𝐺𝑖: 𝑖 ∈ 𝐼}   is a collection of topological groups, the product space   ∏ 𝐺𝑖∈𝐼 𝑖
  can be 

made into topological group under co-ordinate wise multiplication. 

6. Let  𝐻  a subgroup of a topological group  𝐺   and   𝐺 𝐻⁄ is the space of right cosets of𝐻  in  

𝐺  then, if  𝐻  is a normal subgroup of  𝐺 , then  𝐺 𝐻⁄   is a topological group. 

Examples (2.2.2): of non-abelian topological groups 

All examples and properties below are in (Arther and Ralph, 1973). 

Consider the subgroup of rotations of 𝑅3, generated by two rotations by irrational of multiplies of  

2𝜋  about different axes. 

All the above examples are Lie groups (topological groups that are also manifolds). 

An example of a topological group which is not Lie group is given by the rational numbers  𝑄 ,this 

a countable space, and it does not have the discrete topology. 

2.3 Properties: 

1 If   𝑎   is an element of a topological group  𝐺,then left or right multiplication with   𝑎yields a 

homeomorphism𝐺 → 𝐺 ,   thus can be usedto show that all topological groups are actually 

uniform spaces. Every topological group can be viewed as a uniform space in two ways, the 

left uniformly turns all left multiplication into uniformly continuous maps, while the right 

uniformly turns all right multiplication into uniformly continuous maps. If 𝐺 is not abelian, 

these two need not coincide. 

2 As a uniform space, every topological group is completely regular. It follows that if a 

topological group is   𝑇0(𝑖. 𝑒. 𝐾𝑜𝑙𝑚𝑜𝑔𝑜𝑟𝑜𝑣),then it is already  𝑇2 ( i.e. Hausdorff). 

3 The most natural notion of homeomorphism between topological groups is that of a continuous 

group homeomorphism. Topological groups, together with continuous group homeomorphisms 

as morphemes, form a category. 



Mahgoub Elawad Mohammed Ahmed /Nile Journal for Sciences and Engineering, Vol. 01, NO. 02 (2024)112-134 

117 
 

4 If  𝐻  is  a normal subgroup of the topological group 𝐺, then, the factor group  𝐺 𝐻 ⁄   becomes  

a topological group by using the quotient topology (the finest topology on𝐺 𝐻⁄ which makes 

the natural projection   𝐺 → 𝐺 𝐻⁄   continuous). 

5 The algebraic and topological structures of a topological group interact in non-trivial ways, for 

example, in any topological group the connected component containing the identity element, is 

a normal subgroup. 

2.4 Subgroups and nuclei 

Definition (2.4.1): Let  𝐺  be a topological group, and let 𝐻 be a subset of  𝐺 such  that,  𝐻𝐻−1 ⊂

𝐻 , then  𝐻  is a subgroup of  𝐺 .( Arther and Ralph, 1973) 

Corollary (2.4.2):  Let  𝐻  be a closed normal subgroup of the topological group𝐺  and  𝐺 𝐻⁄   is a 

quotient, then  𝐺 𝐻⁄   becomes a topological group such that the projection  𝜋: 𝐺 → 𝐺 𝐻⁄   is an open 

continuous homeomorphism. (Arther and Ralph, 1973) 

Definition (2.4.3) (Arther and Ralph, 1973):  Let   𝐺   be a topological group, then the center𝐶   of   

𝐺  equals  {𝑥 ∈ 𝐺 ∶ 𝑥𝑎 = 𝑎𝑥  ∀ 𝑎 ∈ 𝐺}. The center is a normal subgroup of  𝐺,and is also denoted 

by  𝑍(𝐺). (Arther and Ralph, 1973) 

Definition (2.4.4):  Discrete subgroups of Euclidean spaces under usual additional are known as 

Lattices. (see [1]) 

Definition (2.4.5):  Let  (𝐺, 𝑋, 𝑇)  be a topological group, and  𝐻 a subgroup of G: (Torner, 2003) 

i. The topological closure  𝐻  of  𝐻  is a subgroup. 

ii. If  𝐻  is normal, so is  𝐻 . 

iii. If  𝐻  contains an open set, then  𝐻  is open. 

iv. If  𝐻  is open, then  𝐻  is closed. 

v. If  𝐻  is closed and of finite index in  𝐺 , then  𝐻is open. 

Lemma (2.4.6) :  Let  (𝐺, 𝑋, 𝑇)  be a Hausdorff topological group, if  𝐻  is a closed normal 

subgroup, then  𝐺 𝐻  ⁄ is Hausdorff. (see [1]) 

Lemma (2.4.7):  Let  (𝐺, 𝑋, 𝑇)  be a topological group, then  𝐼 = {𝑒} is a closed normal subgroup. 

(see [1]) 
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Definition (2.4.8) :  If   𝐺   is  a  topological  group, the  connected  component  of identity   𝑒 ∈ 𝐺   

is called the identity component of  𝐺, and is denoted by  𝐺0 , and  𝐺0is closed normal subgroup of  

𝐺 , and the connected component  𝑐(𝑎) of  𝑎 ∈ 𝐺  equals  𝑎𝐺0. (Arther and Ralph, 1973) 

Definition (2.4.9):  A subset of atopological group𝐺 ,which contains an open neighborhood of the 

identity 𝑒, is called a nucleus of  𝐺. (Arther and Ralph, 1973) 

Proposition (2.4.10): let Ѵ be the family of all nucleus of a topological group G, then Ѵ satisfies: 

(see [1]) 

i. 𝑣1 , 𝑣2 ∈ Ѵ  implies  𝑣1  ∩  𝑣1 ∈ Ѵ  ; 

ii. 𝑣1  ∈ Ѵ2  and  𝑣1  ⊂ 𝑊 ⊂ 𝐺  implies 𝑊 ∈ Ѵ; 

iii. For any 𝑣1  ∈ Ѵ , there exists 𝑣−1 ∈ Ѵ  such that 𝑣𝑣−1 ∈ 𝑣1; 

iv. If 𝑣 ∈ Ѵ  and 𝑎 ∈ 𝐺, then 𝑣−1 ∈ Ѵ ; 

v. 𝑣−1 ∩ {𝑣: 𝑣 ∈ Ѵ} = {𝑒}. 

2.5 Locally compact abelian topological groups 

Let   𝐴   be an abelian group, thus   𝐴  is a set equipped with a binary operation  + , which is 

commutative and associative, there is identity element 0 ∈ 𝐴, such that 0 + 𝑎 = 𝑎   for all   𝑎 ∈ 𝐴,  

and each  𝑎 ∈ 𝐴   has an inverse  −𝑎 , characterized by 𝑎 + −𝑎 = 0, as a basic examples, the 

integers, real numbers and complex numbers are  abelian  groups  under  addition, and  for  each 

positive number  𝑛  we have the integers modulo  𝑛 , a cyclic group with  𝑛  elements. 

Let us also assume that   𝐴   is a topological space, which is to say that certain subsets of  𝐴    are 

designated as open subsets. As usual one required that the empty set and  𝐴  itself are open subsets 

of  𝐴 , that the intersection of any finite collection of open subsets is an open subset, and that the 

union of any collection of open sets, is an open subset. Once the open subsets are selected, the 

closed subsets are defined to be the complements in  𝐴  of the open subsets. 

Various standard notions, such as continuity at a point of a mapping between two topological 

spaces, can be defined in terms of the   open   subsets   through standard methods. 

To say that  𝐴  is a topological group, means that the group structure and topo-logy are compactible 

in a natural way. Specifically, the group operation   +   should be continuous as a mapping from   

𝐴 × 𝐴   into  𝐴, and 𝑎 → −𝑎, should be continuous as a mapping from  𝐴  to it self. This implicitly 
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uses the product topology on𝐴 × 𝐴  is open if it is the union of products of open subsets of  𝐴 . It is 

customary to require that  𝐴  be a Hausdorff topological space, which is equivalent in this setting 

to the requirement that  {0}  be a closed subset of 𝐴. 

In any topological space a subset  𝐾  is  said to be compact if every open covering of  𝐾  in the 

space admits a finite sub covering, i.e., if for every family{𝑈𝑖}𝑖∈𝐼  of open subsets of the topological 

space such that: 

(𝑖)𝐾 ⊆ 𝑈𝑖∈𝐼𝑢𝑖. 

There is a finite collection  𝑖1, ⋯ , 𝑖𝐼of indices in  𝐼  such that: 

(𝑖)𝐾 ⊆ 𝑈𝑖𝐼𝑢, ⋯ 𝑢𝑈𝑖𝐼. 

A topological space is said to be locally compact if for each point  𝑥  in the space, there is an open 

subset  𝑊  and a compact subset  𝐾  of the space such that: 

(𝑖)𝑥 ∈ 𝑊 ⊆ 𝐾. 

A locally compact abelian topological group is an abelian topological group which is locally 

compact as a topological space. 

Of course, local compactness at the identity element  𝑒  implies local compact-ness at every point 

because group translations define homeomorphism. 

As in (3), it is simpler to say “LCA group” in place of locally compact abelian topological group. 

The integers modulo𝑛  are natural examples of LCA groupequipped with their discrete topologies, 

in which every subset is considered to be open. For the real and complex numbers, one can use 

their standard topologies, indeed by the usual Euclidean metrics, to get LCA group. One can also 

consider the nonzero complex numbers using multiplication as the group operation and the usual 

topology. If one takes the complex numbers with modulus 1 using multiplication as thegroup 

operation and the usual topology, one gets acompact LCA group. 

Fix an integer  𝑛 ≥ 2, and consider the group consisting of sequences  𝑥 = {𝑥𝑗}
𝑗−1

∞
  such that each 

of them is an integer such that    0 ≤ 𝑥𝑗 ≤ 𝑛 − 1,    and the sum of two elements   𝑥, 𝑦   in the group  

𝐴  is defined by adding each term modulo 𝑛 . If   𝑥   is an element of   the group and𝑖   is a positive   
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integer, then the 𝑖𝑡ℎ  standard neighborhood around𝑥  is defined to be the set of  𝑦  in the group 

such that  𝑥𝑗 = 𝑦𝑗 , then  1 < 𝑗 < 𝐼. This leads to a topology on the space in which a sub set of the 

group is open, if for each point   𝑥  which is contained in the subset. Well known results in topology 

imply that this space is compact with respect to this topology, and in fact it is homeomorphic to the 

cantor set. 

It is easy to see that this example defines a compact LCA group. Namely, the group operations are 

continuous with respect to the topology just defined. This is a nice example where the topological 

dimension is equal to  𝑒  ,which isto say that the space is totally disconnected, with no connected 

subsets with at least two elements. As the same time the topology is not the discrete topology. 

Let 𝐴 be a LCA group. A basic object of interest associated to 𝐴 is translation-invariant  integral, 

which  is  a linear  mapping  from the vector space of complex-valued continuous functions as 𝑓(𝑥) 

on  𝐴  with compact support into the complex number such that the integral of   𝑓(𝑥 + 𝑎)  is equal 

to the integral of  𝑓(𝑥) for all  a ∈ A , the integral of a real valued function is a real number, the 

integral of a non-negative real number, and the integral of  𝑓  is positive, if  𝑓  is a non-negative 

real valued continuous function on  𝐴  with  compact  support  such  that  𝑓(𝑥) > 0  for some 𝑥 ∈

𝐴 . In the examples described earlier such that an integral can be defined explicitly, in terms of 

sums, classical Riemann integrals, or simple generalizations of  Riemann  integrals  for the spaces 

of sequences modulo  𝑛  . A general theorem states that any LCA group𝐴  an invariant integral, and 

that this integral is unique except for multiplying it by a positive real number. 

Let  𝐴  be an abelian group. By a character on  𝐴  we mean a continuous group homeomorphism 

from  𝐴  into the group of complex numbers with modulus I with respect to multiplication. 

Sometimes one may wish to consider   unbounded characters more generally, which are continuous 

homeomorphisms from𝐴   into the non-zero complex numbers with respect to multiplication. Note 

that   any bounded subgroup of the nonzero complex numbers with respect to multiplication is 

contained in the complex numbers with modulus I as one can easily verify. Thus, a bounded, 

continuous homeomorphism from 𝐴 into the group of nonzero complex numbers is a character, and 

in particular every continuous homeomorphism from 𝐴  into nonzero complex numbers is a 

character when  𝐴  is compact. 



Mahgoub Elawad Mohammed Ahmed /Nile Journal for Sciences and Engineering, Vol. 01, NO. 02 (2024)112-134 

121 
 

If  𝑓(𝑥)is a complex valued continuous function on  𝐴  with compact support, or an integrable 

function more generally, one can define its Fourier transformation 𝑓(∅)by saying that if  ∅  is a 

character on  𝐴 , then  𝑓(∅)is the integral of  𝑓 times the complex numbers conjugate of   ∅  , using 

a fixed invariant integral on  𝐴  as discussed previously. If   𝐴  is not compact, then one can extend 

this to a Fourier – Laplace transform by allowing unbounded characters, at least when 𝑓  has 

compact support or sufficient integrality properties. For bounded character one has the usual 

inequality which states that  |𝑓(∅)|  is less than or equal to the integral of |𝑓| . 

Many classical a sects of Fourier analysis work in this setting. A basis point is that the Fourier 

transform diagonalizes translation operator, which means that if  𝑎 ∈ 𝐴   and  𝑓(𝑥)  is continuous 

function on the group with compact support, or an integrable function on the group, then the Fourier 

transform of  𝑓(𝑥 − 𝑎)at the character  ∅  is equal to   ∅(𝑎)  times as Fourier transform of   

𝑓(𝑥)at  ∅ . One can also define convolution in the usual way,  ⊕using the invariant integral on  

𝐴 , and the Fourier transform of a convolution is equal to the product of the corresponding Fourier 

transforms. 

3 Topological𝐠𝐫𝐨𝐮𝐩𝐬, compactificationsIntroduction 

Every topological group  𝐺  has some natural compactifications. They can bedescribed as the 

maximal ideal spaces of certain functions algebras, or as the Samuel compactifications for certain 

uniformities on 𝐺 , some compactifications of  𝐺  carry an algebraic structure, and may be useful 

for studying the group  𝐺  itself. 

We consider, in particular, the following constructions: the greatest ambit 𝑆(𝐺) and the universal 

minimal compact𝐺-space   𝑀𝐺(sections 2 and 3); e  Roelcke  compactifications 𝑅(𝐺)  ( section 4 

) ; the  weakly  almost  periodic compactifications  𝑊(𝐺)( section 5 ). In the last case the canonical 

map  𝐺 → 𝑊(𝐺)   need not be an embedding. In section 6 ,  we discuss   the  group  of isometrics 

of the Urysohn universal metric space 𝑢, all these  topics   are  included  in [4] and [5]. 

3.2 Greatest ambit  𝑺(𝑮) 

Let  𝐺  be a topological group, the Banach space   𝐵 = 𝑅𝑈𝐶𝑏(𝐺) of all right uniformly continuous 

bounded complex functions on  𝐺  is a   𝐶∗ − 𝑎𝑙𝑔𝑒𝑏𝑟𝑎  , and  𝐺    acts on 𝐵   by 𝐶∗ −

𝑎𝑙𝑔𝑒𝑏𝑟𝑎   automorphisms. Let    𝑆(𝐺)be the compact maximal ideal space of  𝐵  . It is the least 
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compactifications of   𝐺  over which all functions from   𝐵 can extended. The topological group of 

all  𝐶∗ − 𝑎𝑙𝑔𝑒𝑏𝑟𝑎   

automorphisms of𝐵    is naturally isomorphic to𝐻(𝑆(𝐺)) . It   follows   that  𝐺  acts on  𝑆(𝐺), and 

the natural homeomorphism𝐺 → 𝐻(𝑆(𝐺))  is a topological embedding. 

The space   𝑆(𝐺)  can also be described as the Samuel compactifications of the uniform space  

(𝐺, 𝑅) , here  𝑅   is the right uniformity on  𝐺  . The basic entourages for  𝑅   are of the form 

{(𝑥, 𝑦) ∈ 𝐺 ∶ 𝑥𝑦−1 ∈ 𝑉}  , where  𝑉 ∈ 𝑁(𝐺)  . The Samuel compactifications of a uniform space  

(𝑥, 𝑢)  is the completion of   𝑥   with respect to the finest pre-compact uniformity which coarser 

than  𝑢 . 

We shall consider 𝐺  as dense subspace of 𝑆(𝐺) . The action  𝐺 × 𝑆(𝐺) → 𝑆(𝐺)  extends the 

multiplication  𝐺 × 𝐺 → 𝐺 . 

A  𝐺 − 𝑠𝑝𝑎𝑐𝑒  is a topological space 𝑋  with a continuous action of  𝐺 , that is, a map  𝐺 × 𝑋 → 𝑋  

satisfying   𝑔(ℎ𝑥) = (𝑔ℎ)𝑥  and  𝑖𝑥 = 𝑥 , (𝑔, ℎ ∈ 𝐺, 𝑥 ∈ 𝑋). A  𝐺 − 𝑚𝑎𝑝  is a map   𝑓 ∶ 𝑋 → 𝑌   

between  𝐺 − 𝑠𝑝𝑎𝑐𝑒𝑠 such that𝑓(𝑔𝑥) = 𝑔𝑓(𝑥) for all 𝑥 ∈ 𝑋 , 𝑔 ∈ 𝐺 . The 𝐺 − 𝑠𝑝𝑎𝑐𝑒𝑠𝑆(𝐺) has 

distinguished point 𝑒 ( the unity ), and the pair   (𝑆(𝐺), 𝑒)   has the following universal  property : 

for  every  compact  𝐺 − 𝑠𝑝𝑎𝑐𝑒  𝑋  and every  𝑝 ∈ 𝑋 there exists a unique 𝐺 − map 𝑓: 𝑆(𝐺) → 𝑋  

such that   𝑓(𝑒) = 𝑝 . Indeed, the map𝑔 → 𝑔𝑝   from   𝐺  to   𝑋  is   𝑅 − uniformly continuous and 

hence can be extended over  𝑆(𝐺). 

Theorem (3.2.1) : For  every  topological  group  𝐺  the greatest  ambit   𝑋 = 𝑆(𝐺)  has  a natural  

structure of  a left  topological semi group  with a unity such that the multiplication  𝑋 × 𝑋 →

𝑋  extends the action  𝐺 × 𝑋 → 𝑋 .   

Proof 

Let  𝑥, 𝑦 ∈ 𝑋  such  that   𝑟𝑦(𝑒) = 𝑦 . Define   𝑥𝑦 =  𝑟𝑦(𝑥). Let us verify that the multiplication   

(𝑥, 𝑦) → 𝑥𝑦   has the required properties. For a fixed  𝑦  the  map 𝑥 → 𝑥𝑦 is equal to  𝑟𝑦 and hence 

is continuous. If  𝑦𝑧 ∈ 𝑋 , the self-maps𝑟𝑧𝑟𝑦  and  𝑟𝑧𝑦  of 𝑋 are equal, since both are 𝐺 − maps  

sending 𝑒 to  𝑦𝑧 = 𝑟𝑧(𝑦). This means the multiplication on   𝑛𝑋   is associative. The distinguished 

element   𝑒 ∈ 𝑋  is the unity of  𝑋 ∶  we have = 𝑟𝑥(𝑥) = 𝑥 . If  𝑔 ∈ 𝐺  𝑎𝑛𝑑  𝑥 ∈ 𝑋 , the expression  

𝑔𝑥  can be understood in two ways: in the sense of exterior action of 𝐺 on 𝑋 as a product in  𝑋.To 
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see that these two meanings agree, note that  𝑟𝑥(𝑔) = 𝑟𝑥(𝑔𝑒) = 𝑔𝑟𝑥(𝑒) = 𝑔𝑥  ( the exterior action 

is meant in the last two terms; the equality holds since  𝑟𝑥  is a 𝐺 − 𝑚𝑎𝑝 . 

3.3 Universal minimal compact 𝑮 − 𝒔𝒑𝒂𝒄𝒆 

Definition (3.3.1):A  𝐺 − 𝑠𝑝𝑎𝑐𝑒  is  minimal if it has no proper𝐺 − invariant closed subset or, 

equivalently, if the orbit  𝐺𝑥  is dense in  𝑋 for every  𝑥 ∈ 𝑋. 

Lemma (3.3.2) : The Universal minimal compact 𝐺 − 𝑠𝑝𝑎𝑐𝑒   𝑀𝐺  is  characterized  by  the  

following  property:  𝑀𝐺  is  minimal  compact   𝐺 − 𝑠𝑝𝑎𝑐𝑒    and  for every compact minimal  𝐺 −

𝑠𝑝𝑎𝑐𝑒 𝑋  there exists a  𝐺 − 𝑚𝑎𝑝  of  𝑀𝐺  onto  𝑋. 

Since  Zorn′ s lemma implies that every compact  𝐺 − 𝑠𝑝𝑎𝑐𝑒  has a minimal compact 𝐺 −

𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 , it follows that for every compact  𝐺 − 𝑠𝑝𝑎𝑐𝑒 𝑋,  minimal or not, there exists a  𝐺 −

𝑚𝑎𝑝  of  𝑀𝐺   to  𝑋. 

Lemma (3.3.3):The existence of 𝑀𝐺   is easy: take for  𝑀𝐺    any minimal closed  𝐺 −

𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒  of    𝑆(𝐺)  universal property of  (𝑆(𝐺), 𝑒)   implies the correspond-ding universal 

property of  𝑀𝐺  . It is also true that  𝑀𝐺   is unique, in the sense that any two Universal minimal 

compacts𝐺 − 𝑠𝑝𝑎𝑐𝑒𝑠  are isomorphic. 

Proposition (3.3.4):If   𝑓: 𝑋 → 𝑋  is  a   𝐺 − 𝑠𝑒𝑙𝑓 − 𝑚𝑎𝑝and   𝑎 = 𝑓(𝑒)then  𝑓 = 𝑟𝑎. 

Proof: We have 𝑓(𝑥) = 𝑓(𝑥𝑒) = 𝑥(𝑓(𝑒)) = 𝑥𝑎 = 𝑟𝑎(𝑥)  and hence for all  𝑥 ∈ 𝑋. 

A subset  𝐼 ⊂ 𝑋 is a left ideal if 𝑋𝐼 ⊂ 𝐼. Closed 𝐺 − subspaces  of  𝑋  are the same as closed left 

ideals of𝑋 . An element𝑥  of asemi group is an idempotent if  𝑥2 = 𝑥  . Every closed   𝐺 −subspace 

of   𝑋 , being aleft ideal, is moreover a left topological compact and hence contains an idempotent. 

Theorem (3.3.5): Every non-empty compact left topological semi group 𝐾 contains an idempotent. 
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Proof:  Zorn′s lemma implies that there exists a minimal element  𝑌  in the set of all closed non-

empty sub semi groups of   𝐾 . Fix  𝑎 ∈ 𝑌 . We claim that  𝑎2 = 𝑎(and  hence  𝑌  is  a  sigleton). 

The set 𝑌𝑎  , being aclosed semi group of 𝑌 .  It follows that the closed sub semi group 𝑍 =

{𝑥 ∈ 𝑌 ∶ 𝑥𝑎 = 𝑎}  is non-empty. Hence 𝑍 = 𝑌  and  𝑥𝑎 = 𝑎  for every  𝑥 ∈ 𝑌. It particular,  𝑎2 =

𝑎 . 

Let  𝑀  be a minimal closed left ideal of  𝑋 . We have just proved that there an idempotent 𝑃 ∈ 𝑀. 

Since  𝑋𝑃  is closed left ideal contained in 𝑀,  we have 𝑋𝑃 = 𝑀.  It follows that  𝑥𝑝 =

𝑥  for every  𝑥 ∈ 𝑀 . The  𝐺 − 𝑚𝑎𝑝  𝑟𝑝 ∶ 𝑋 → 𝑀defined by𝑅𝑃(𝑋) = 𝑋𝑃  is a retraction of  𝑥  onto  

𝑀 . 

Proposition (3.3.6):Every  𝐺 − 𝑚𝑎𝑝𝑓 ∶ 𝑀 → 𝑀  has  the form𝑓(𝑥) = 𝑥𝑦  for some  𝑦 ∈ 𝑀. 

Proof:  The composition  ℎ = 𝑓𝑟𝑃: 𝑋 → 𝑀  is a  𝐺 − 𝑚𝑎𝑝  of  𝑋  into itself, hence it has the form  

ℎ = 𝑟𝑦  , where 𝑦 = ℎ(𝑒) ∈ 𝑀 (Proposition 3.3.1). Since  𝑟𝑃 ↑ 𝑀 = 𝐼𝑑, we have  𝑓 = ℎ ↑ 𝑀 =

𝑟𝑦 ↑ 𝑀. 

Proposition (3.3.7):Every  𝐺 − 𝑚𝑎𝑝𝑓 ∶ 𝑀 → 𝑀  is bijective. 

Proof:  According to Proposition (3.3.6), there is 𝑎 ∈ 𝑀  such that  𝑓(𝑥) = 𝑥𝑎  for all 𝑥 ∈ 𝑀. 

Since 𝑀𝑎 is a closed left ideal of 𝑋 contained in  𝑀 , we have  𝑀𝑎 = 𝑀 by the minimality of 𝑀 . 

Thus there exists   𝑏 ∈ 𝑀   such that   𝑏𝑎 = 𝑝.Let  every𝑔 ∶ 𝑀 → 𝑀 be the 𝐺 − map  defined by 

𝑔(𝑥) = 𝑥𝑏. Then 𝑓𝑔(𝑥) = 𝑥𝑏𝑎 = 𝑥𝑏 = 𝑥 for every  𝑥 ∈ 𝑀 , and therefore  𝑓𝑔 = 𝐼 (the identity 

map of M ). We have proved that in the semi group  𝑆  of all  𝐺 − 𝑠𝑒𝑙𝑓 − 𝑚𝑎𝑝  of  𝑀 , every 

element has a right inverse. Hence 𝑆 is a group (alternatively, we first deduce from the equality   f 

𝑔=1 that all elements of  𝑆  are surjective and then, applying this to  𝑔  , we see that  𝑓  is also 

injective.) 

Theorem (3.3.8):For every topological group  𝐺 the action of  𝐺 on the universal minimal compact  

𝐺 − 𝑠𝑝𝑎𝑐𝑒  𝑀𝐺   is not 3-transitive. 

For example, if  𝐾  is  a compact manifold of dimension> 1, or a compact Menger manifold and  

𝐺 = 𝐻(𝐾),then  𝑀(𝐺) ≠ 𝐾 , since the action of  𝐺  on  𝐾  is 3-transitive. 

It would be interesting to understand what is  𝑀(𝐺)  in this case. 
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Let  𝑃  be the pseudo arc (= the unique hereditarily indecomposable chainable continuum) and  

𝐺 = 𝐻(𝑃). The action of  𝐺  on 𝑃 is transitive but not 2-transitive, and the following question 

remain open: 

Let  𝑃  the pseudo arc and  𝐺 = 𝐻(𝑃). Can  𝑀𝐺   be identified with  𝑃 ? 

Question (3.3.9):  Let  𝐺   be abelian topological group. Suppose that 𝐺  has no non-trivial 

continuous characters  𝑋 ∶  𝐺 → 𝑇.  Is  𝐺  extremely amenable. 

For cyclic group the question can be reformulated as follows: Let  𝐾  be a compact space, and let 

𝑓 ∈ 𝐻(𝐾)  be a fixed-point free homeomorphism of  𝐾 . Let  𝐺   be the cyclic subgroup of  𝐻(𝐾)  

generated by  𝑓  . Does there exists a complex number  𝑎  such that  |𝑎| = 𝐼, 𝑎 ≠ 𝐼 , and the 

homeomorphism  𝑋 ∶  𝐺 → 𝑇 defined by  𝑋(𝑓𝑛) = 𝑎𝑛  is continuous. 

If 𝐾 is a circle, the answer is yes: for every orientation-preserving homeomorphism𝑓 of a circle, 

the rotation number is defined which gives rise to a non-trivial continuous character on the group 

generated by  𝑓 . 

A positive answer to question (3.3.9) would imply the solution of the problem: Is it true that for 

every big set S of integers, the set 𝑆 − 𝑆 contains a neighborhood of zero for Bohr topology on  𝑍  

? A set  𝑆 of integers is said to be big (or syndetic) if  𝑆 + 𝐹 = 𝑍 for some finite  𝐹 ⊂ 𝑍; this means 

that the gaps between consecutive terms of𝑆  are  uniformly bounded. The Bohr topology on𝑍  

generated  by all characters  𝑋 ∶  𝑍 → 𝑇 . It is known that for every big subset  𝑆 ⊂ 𝑍  the  S − S +

S  contains a Bohr neighborhood of zero. 

Extremely amenable groups can be characterized in terms of big sets. A subset  𝑆  of a topological 

group  𝐺  is big on the left, or left syndetic, if  𝐹𝑆 = 𝐺  for some finite  𝐹 ⊂ 𝐺. 

Theorem (3.3.10):  A topological group𝐺is extremely amenable if and only if whenever  𝑆 ⊂ 𝐺  

is big on the left,  𝑆𝑆−1 is dense in  𝐺. 

Theorem (3.3.11):  A topological group  𝐺 is extremely amenable if and only if for every bounded 

left uniformly continuous function 𝑓 from  𝐺 to a finite dimensional Euclidean space, every  𝜀 > 0 

, and every finite (orcompact)𝐾 ⊂ 𝐺  there exists  𝑔 ∈ 𝐺  such that diameter  𝑓(𝑔𝑘) < 𝜀 . 



On The Topological Groups and Their Compactifications 

   126 
 
 

3.4 Roelcke Compactifications 

Definition (3.4.1):  For a topological group𝐺let 𝑅(𝐺) be the maximal ideal of the  𝐶∗ − algebra  

of all bounded complex functions on 𝐺  which are both left and right uniformly continuous. The 

space  𝑅(𝐺)  is  the Samuel compactifications of theuniform space(𝐺, ℓ˄𝑅) , where   ℓ  is the left 

uniformly on   𝐺, 𝑅   is the rightuniformly, and  ℓ˄𝑅 is the Roelcke uniformly on  𝐺  , the greatest 

lower bound of ℓ  and  𝑅 . We call 𝑅(𝐺)  Roelcke compactifications of  𝐺 . 

Lemma (3.4.2): While the greatest lower bound of two compactible uniformities on a topological 

space in general need not be compatible, the Roelcke uniformity is compatible with the topology 

of  𝐺 . The covers of the form  {𝑈𝑥𝑈 ∶ 𝑥 ∈ 𝐺, 𝑈 ∈ 𝑁(𝐺)} , constitute a base of uniform covers of 

Roelcke uniformity. 

If  𝐺 is abelian, (𝐺) = 𝑆(𝐺) . In general,𝑅(𝐺)  is a −𝑠𝑝𝑎𝑐𝑒 , and the identity map of  𝐺  extends 

to a  𝐺 − 𝑚𝑎𝑝 𝑆(𝐺) → 𝑅(𝐺). 

Definition (3.4.3): The group  𝐺  is  precompact if one of the following equivalent properties holds: 

i. (𝐺, 𝐿)  is precompact. 

ii. (𝐺, 𝑅) is precompact. 

iii. 𝐺 is a subgroup of a compact group. 

It can be shown that  𝐺  is precompact if and only if 𝐺 for everyneighborhood 𝑈  of unity, there 

exists a finite  𝐹 ⊂ 𝐺   such that  𝐺 = 𝐹 ∪ 𝐹 . Let us say that  𝐺 is Roelcke precompact if the 

Roelcke uniformity  ℓ˄𝑅  is precompact. This exists a finite   𝐹 ⊂ 𝐺   such that  𝐺 = 𝐹 ∪ 𝐹. There 

are many non-abelian non-precompact groups which are Roelcke compactifications. For example, 

the symmetric group  𝑠𝑦𝑚𝑚 (𝐸)  of all permutations of a discrete space  𝐸 , or the unitary group  

𝑈(𝐻)  , on a Hilbert space   𝐻  , equipped with the strong operator topology, are Roelcke 

precompact. The Roelcke compactifications of these groups can be explicitly described with the 

aid of the following construction: 

Suppose that  𝐺  acts on a compact space  𝐾 . For   𝑔 ∈ 𝐺 , let   𝑟(𝑔) ⊂ 𝐾2  be the graph of the   

𝑔 − shift   𝑥 → 𝑔𝑥 . The map  𝑔 → 𝛤(𝑔)  from  𝐺  to  𝐸𝑥𝑝 𝐾2  is both left and right uniform 

continuous (if the compact space  𝐸𝑥𝑝 𝐾2  is equipped with its unique compactible uniformity), 

hence it extends to a map  𝑓𝑘 ∶ 𝑅(𝐺) → 𝐸𝑥𝑝 𝐾2. If the action of   𝐺  on   𝐾  is topologically faithful, 
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the map   𝑓𝑘   often happens to be an embedding in which case  𝑅(𝐺) can be identified with the 

closure of the set  {𝛤(𝑔): 𝑔 ∈ 𝐺}  in  𝐸𝑥𝑝 𝐾2 . For example, this the case if   𝐾 = 𝑆(𝐺) or  𝐾 =

𝑅(𝐺). 

The space 𝐸𝑥𝑝 𝐾2  is  the space of all closed relations on  𝐾. It has a rich structure, since relations 

can be composed, reversed, or compared by induction. This structure is party inherited by  𝑅(𝐺) . 

Let us consider some examples. 

Example (3.4.4): Let   𝐺 = 𝑠𝑦𝑚𝑚(𝐸)  be the topological symmetric group. It acts on the compact 

cube𝐾 = 2𝐸  . The natural map𝑓𝑘 ∶ 𝑅(𝐺) → 𝐸𝑥𝑝 𝐾2in an embedding. 

Example (3.4.5):  Let   𝐺be the unitary group𝑈(𝐻) , of a Hilbert space𝐻 , equipped with the strong 

operator topology (this is the topology of point wise convergence inherited from the product  𝐻𝐻 

). Let  𝐾  be the unit ball of  𝐻 . Equip 𝐾 with the weak topology. Then  𝐾  is compact. The unitary 

group  𝐺  acts on  𝐾 , and the map  𝑅(𝐺) → 𝐸𝑥𝑝 𝐾2  is an embedding. 

The space  𝑅(𝐺)  has a better description in this case :  𝑅(𝐺)  can be identified with the unit ball  

𝜃 in Banach algebra  𝐵(𝐻)  of all bounded linear operators on 𝐻. The topology on 𝜃 is the weak 

operator topology: the map 𝐴 → 𝐴 𝐾⁄  which assigns to every operator of norm   ≤ 1  its restriction 

to  𝐾  is a homeomorphic embedding of  𝜃   into the compact space   𝐾𝐾  . Thus   𝑅(𝐺) has  a  

natural  structure  of  semi topological semi group. 

Example (3.4.6):  Let   𝐾   be a zero-dimensional compact space such that all non-empty clopen 

subsets of  𝐾  are homeomorphic to  𝐾 . Let  𝐺 = 𝐻(𝐾)  , the natural map  𝑓𝑘 ∶ 𝑅(𝐺) → 𝐸𝑥𝑝 𝐾2  

is an embedding. Moreover, the image of  𝑓𝑘 , which is the closure of the set of all graphs of self-

homeomorphisms of   𝐾 , is the set   𝜃  of all closed relations on  𝐾  whose domain and range are 

equal to  𝐾 . Thus 𝑅(𝐺) can be identified with  𝜃 . 

This time   𝑅(𝐺) is an ordered semi group, but not a semi topological semi group, since the 

composition of relations is not a separately continuous operation. As in the pervious example, one 

can use the space 𝑅(𝐺) to prove that 𝐺  is minimal. Moreover, every non-constant onto group 

homeomorphism   𝑓 ∶ 𝐺 → 𝐻   is an isomorphism of topological groups. To prove this, we proceed 

as before extend  𝑓 to   𝑓 ∶ 𝐺 → 𝐻    and look at the kernel   𝑆 = 𝐹−1(𝑒𝑛) . Zorn’s lemma implies 

the existence of maximal idempotent in  𝑆(with respect to the inclusion). Symmetric idempotent 
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above the unity (= the identity relation = the diagonal of  𝐾2 ) in  𝜃are precisely closed equivalence 

relations on  𝐾 . Since there are no non-trivial choices for  𝑆  either 𝑆 = {1}  𝑜𝑟  𝑆 = 𝜃 . 

Example (3.4.7):   Let    𝐺 = 𝐻+(1)be the group of all orientation-preserving homeomorphisms 

of the closed interval  𝐼 = [0,1] . The map   𝑓𝐺 ∶ 𝑅(𝐺) → 𝐸𝑥𝑝 𝐼2 is a homeomorphic embedding. 

Thus   𝑅(𝐺)   can be identified with the closure of the set of all graphs of strictly increasing 

functions   ℎ ∶ 𝐼 → 𝐼  such  ℎ(0) = 0  and ℎ(1) = 1 .  

This closure consists of all curves  𝐶 ⊂ 𝐼2   which lead from (0,0) to (1,1) and like graphs of 

increasing functions, with the exception that𝐶  may  include both horizontal and vertical segments. 

There seems to be no natural semi group structure on   𝑅(𝐺) . This observation leads to an 

important result: The group  𝐺   has no non-trivial homeomorphisms to compact semi topological 

semi groups and has no non-trivial representation by isometries in reflective Banach space. 

3.5 WAP compactifications 

Definitions (3.5.1): Let  𝑆  a semi group and a topological space. if   the multiplication (𝑥, 𝑦) →

𝑥𝑦   is separately continuous (this means that the maps  𝑥 → 𝑎𝑥  and  𝑥 → 𝑥𝑎  are continuous for 

every  𝑎 ∈ 𝑆 ), we say that   𝑆   is a semi topological semi group. 

For a topological group  𝐺   let   𝑓 ∶ 𝐺 → 𝑊(𝐺)   be the universal object in the category   of   

continuous   semi   group   homeomorphisms of  𝐺  to compact semi-topological semi groups. In 

other words,  𝑊(𝐺)    is a compact semi topological semi group, and for every continuous 

homeomorphism  𝑔 ∶ 𝐺 → 𝑆   to a compact semi topological semi group𝑆 there exists a unique 

homeomorphism  ℎ: 𝑊(𝐺) → 𝑆  such that  𝑔 = ℎ𝑓 . 

The existence of𝑊(𝐺)follows from twofacts: (1) arbitrary products are defined in the category of 

compact semi topological semi groups; (2) the cardinality of a compact space has an upper bound 

in terms of its density.  The space   𝑊(𝐺)can also be defined in terms of weakly almost periodic 

functions. Recall the definition of such functions. 

Let a topological group  𝐺  act on a space  𝑋 . Denote by   𝐶𝑏(𝑋)    the Banach space of all bounded 

complex valued continuous functions on    𝑋equipped with the supremum norm. A function     𝑓 ∈
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𝐶𝑏(𝑋)   is called weakly almost   periodic  (𝑤. 𝑎. 𝑝. for short), if the  𝐺-orbit of𝑓  is weakly 

relatively compact in the Banach space  𝐶𝑏(𝑋)  . 

In particular, considering the left and right actions of a group  𝐺  on it self, we can define left and 

right weakly almost periodic functions on 𝐺 . These two notions are actually equivalent, so we can 

simply speak about   𝑤. 𝑎. 𝑝. functions on a group   𝐺. The space WAP of all   𝑤. 𝑎. 𝑝.  functions 

on a group  𝐺  is a 𝐶∗ − algebra , and the maximal ideal space of this algebra can be identified 

with  𝑊(𝐺).Thus the algebra WAP is isomorphic to the algebra 𝐶(𝑊(𝐺))of continuous functions   

on   𝑊(𝐺) . We   call   𝑊(𝐺)   the   weakly   almost   periodic   𝑤. 𝑎. 𝑝.  compacti-fications of the 

topological group  𝐺 . 

Remark (3.5.2):  We show a compactification of a topological space𝑋,  we have a compact 

Hausdorff space    𝐾together with a continuous map𝑗 ∶ 𝑋 → 𝐾 

with a dense range. We do not require that  𝑗  be a homeomorphic embedding. 

For every reflexive Banach space  𝑋   , there a compact semi topological semi group  𝜃(𝑋)  

associated with  𝑋 : the semi group of all linear operators   𝐴 ∶ 𝑋 → 𝑋 of norm ≤ 1 , equipped with 

the weak operator topology. Recall that a Banach space  𝑋 is reflexive if and only if the unit ball  

𝐵  in  𝑋 is weakly compact. If  𝑋 is reflexive,  𝜃(𝑋)  is homeomorphic to a closed sub space of   

𝐵𝐵(where𝐵  carries the weak topology, and hence compact) . 

It turns out that every compact semi topological semi group embeds into   𝜃(𝑋)  for some reflexive  

𝑋 . 

Theorem (3.5.3): Every compact semi-topological semi-group is isomorphic to a closed sub semi 

group of  , 𝜃(𝑋) for some reflexive Banach space. 

The group of invertible elements of    𝜃(𝑋)  is the group   𝐼𝑠𝑤(𝑋)of isometries of  𝑋, equipped with 

the weak operator topology. This topology actually coincides with the strong operator topology. 

Theorem (3.5.4):  For every reflexive Banach space, the weak and strong operator topologies on 

the group  𝐼𝑠(𝑋)  agree. 
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In particular, the group of invertible elements of  𝜃(𝑋)  is a topological group. The natural action 

of this group on  𝜃(𝑋)is (jointly) continuous. This can be easily deduced from the fact that the   

topological group  𝐼𝑠𝑆(𝑋∗) = 𝐼𝑠𝑤(𝑋∗) are canonically isomorphic. In virtue of Theorem (3.5.3), 

similar assertions hold true for every compact semi topological semi group  𝑆 : the group𝐺  of   

invertible elements of𝑆is atopological group, and the map(𝑥, 𝑦) → 𝑥𝑦 is joint continuous on  𝐺 × 𝑆  

. Thus  𝑆  is a 𝐺-space. 

It follows for every topological group   𝐺  the compact semi topological semi group 𝑊(𝐺) is a 𝐺-

space , hence there exists a  𝐺-map 𝑆(𝐺) → 𝑊(𝐺)  extending the canonical map   𝐺 → 𝑊(𝐺)In 

terms  of  function   algebras, this  means  that every  𝑤. 𝑎. 𝑝.  function on   𝐺   is right uniformly  

continuous , since   the   algebra  WAP  is  invariant  under  the  inversion  on   𝐺 ,   𝑤. 𝑎. 𝑝.   

functions  are  also  left uniformly continuous and hence Roelcke uniformly continuous . 

It follows that there is a natural map  𝑅(𝐺) → 𝑊(𝐺) . If   𝐺 = 𝑈(𝐻)   is the unitary group of a 

Hilbert space  𝐻 , then     𝑅(𝐺) = 𝜃(𝐻)  is a compact semi topological semigroup,and therefore 

the canonical map    𝑅(𝐺) → 𝑊(𝐺)    is a homeomorphism, thus   𝑊(𝐺) = 𝜃(𝐻) .The canonical 

map𝑆(𝐺) → 𝑊(𝐺)  is a homeomorphism if and only if  𝐺  is precompact. 

In virtue of Theorem (3.5.3) and a (3.5.4), the following two properties are equivalent for every 

topological group  𝐺 ∶ 

1. The canonical map  𝐺 → 𝑊(𝐺)  is injective. 

2. There exists a faithful representation of   𝐺 by isometries of reflexive Banach space. 

Similarly, the canonical map  𝐺 → 𝑊(𝐺)   is homeomorphic embedding if and only if   𝐺   is 

isomorphic to a topological sub group of   𝐼𝑠(𝑋)   for some reflexive Banach space. 

Theorem (3.5.5):  Let  𝐺 = 𝐻+(𝐼) be the group of all orientation preserving homeomorphisms of  

𝐼 = [0,1]. Then W(G) is a singleton. Equivalently, every 𝑤. 𝑎. 𝑝.  function on  𝐺  is constant. 
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3.6 The group𝑰𝒔(𝑼) 

Definition (3.6.1):  The group’𝑠 of Urysohn universal metric space  𝑈 . 

A metric space  𝑀  is 𝑤-homogeneous if every isometry between two finite subsets of  𝑀 extends 

to an isometry of𝑀into itself. A metric space 𝑀 is finitely injective f it has the following property: 

If   𝐾    a finite metric space and 𝐿 ⊂ 𝐾 , then every isometric embedding 𝐾 → 𝑀 . The Urysohn 

universal space  𝑈 is the unique complete separable metric space with the following properties: (1)  

𝑈   contains an isometric copy of any separable metric space; (2)  𝑈   is 𝑤 -homogenous. 

Equivalently, 𝑈  is the unique finitely-injective complete separable metric space. The uniqueness 

of  𝑈  is easy: Given two separable finitely injective spaces  𝑈1 and 𝑈2 , one can use the “back and 

forth” or “shuttle” method to construct an isometry between countable dense subsets of  𝑈1 and  𝑈2 

. If 𝑈1 and  𝑈2  are complete, they are isometric themselves. 

Let  𝐺 = 𝐼𝑠(𝑈) . The group 𝐺  is a universal topological group with a countable base; every 

topological group   𝐻   with a countable base is isometric to a subgroup of   𝐺 . The idea of the 

proof is first to embed  𝐺  into   𝐼𝑠(𝑀)   for separable metric space   𝑀   and then to embed   𝑀  

into  𝑈  in such a way that every isometry of  𝑀  has a natural extension to an isometry of  𝑈 . 

Let   (𝑋, 𝑑)  be a metric space. We say that a function  𝑓 ∶ 𝑋 → 𝑅+  is Katetov if: |𝑓(𝑥) − 𝑓(𝑦)|  ≤

𝑑(𝑥, 𝑦) ≤ 𝑓(𝑥) + 𝑓(𝑦)   for all   𝑥, 𝑦 ∈ 𝑋 . A function 𝑓  is katetov  if and only if there exists a 

metric space   𝑌 = 𝑋 ∪ {𝑝}   containing  𝑋  as a subspace such that  𝑓(𝑥)  for every  𝑥 ∈ 𝑋  is equal 

to the distance between  𝑥  and 𝑝 . Let   𝐸(𝑋)  be the set of all Katetov functions on   𝑋 , equipped 

with the sub-metric. If  𝑌 is a non-empty subset of  𝑋 and  𝑓 ∈ 𝐸(𝑌), define 𝑔 = 𝐾𝑌(𝑓) ∈ 𝐸(𝑋) 

by 

𝑔(𝑥) = 𝑖𝑛𝑓{𝑑(𝑥, 𝑦) + 𝑓(𝑦): 𝑦 ∈ 𝑌} 

for every  𝑥 ∈ 𝑋 . It is easy to check that  𝑔  is indeed a Katetov function on  𝑋  and that 𝑔 extends 

𝑓 . The map 𝐾𝑟 : 𝐸(𝑌) → 𝐸(𝑋)    is an isometric embedding. Let 𝑋∗ = 𝑈{𝐾𝑟(𝐸(𝑌): 𝑌 ⊂

𝑋, 𝑌 ) 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒 𝑎𝑛𝑑 𝑛𝑜𝑛 − 𝑒𝑚𝑝𝑡𝑦} ⊂ 𝐸(𝑋). 

For every  𝑥 ∈ 𝑋  let ℎ𝑥 ∈ 𝐸(𝑋) be the function on 𝑋 defined by  ℎ𝑥(𝑦) = 𝑑(𝑥, 𝑦). Note that   

ℎ𝑥 = 𝐾{𝑥}(0)   and hence   ℎ𝑥 ∈ 𝑋∗. The map   𝑥 → ℎ𝑥   is an isometric embedding of   𝑋  into𝑋∗ 

Thus we can identify  𝑋   with a subspace of   𝑋∗  . If  𝐾   is a finite metric space, 𝐿 ⊂
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𝐾  𝑎𝑛𝑑  |𝐾 𝐿⁄ | = 1 , then every isometric embedding of  𝐿  into  𝑋  can be extended to an isometric 

embedding of  𝐿  into 𝑋∗ . 

Every isometry of  𝑋  has a canonical extension to isometry of  𝑋∗ , and we get an embedding of 

topological group    𝐼𝑠(𝑋)  →  𝐼𝑠(𝑋∗) . (Note that the natural homeomorphism  𝐼𝑠(𝑋) → 𝐼𝑠(𝐸(𝑋))  

in general need not be  continuous). Iterating the construction of  𝑋∗ , we get an increasing 

sequence of metric spaces  𝑋 ⊂ 𝑋∗ ⊂ 𝑋∗∗ ⋯ ⋯. Let  𝑌  be the union of this sequence, and let  𝑌̅  be 

the completion of  𝑌 . We have a sequence of embedding of topological group 

𝐼𝑠(𝑋) → 𝐼𝑠(𝑋∗) → 𝐸(𝑋∗∗) → 𝐸(𝑌) → 𝐸(𝑌̅) 

The space  𝑌  is finitely-injective. 𝑌 ̅the completion of a finitely-injective. Assume that  𝑋  is 

separable, then  𝑌  is separable, and  𝑌̅  is a complete separable finitely-injective metric space. Thus 

𝑌̅is isometric to  𝑈 , and hence  𝐼𝑠(𝑋) is isomorphic to to a topological subgroup of  𝐼𝑠(𝑈). 

Every topological group  𝐺  with a countable base is isomorphic to subgroup of 𝐼𝑠(𝑋) for some 

separable Banach space  𝑋 : There is a countable subset𝐴 ∈ 𝑅 ∪ 𝐶𝑏(𝐺)   which generates the 

topology of  𝐺 , and we can take for  𝑋  the closed  𝐺-invarient linear subspace of  𝑅 ∪ 𝐶𝑏(𝐺)  

generated by  𝐴 . We just saw that  𝐼𝑠(𝑋)  isomorphic to a subgroup of  𝐼𝑠(𝑈) . Thus, we have 

proved: 

Theorem (3.6.2):  Every topological group with a countable base is isomorphic to a topological 

subgroup of the group𝐼𝑠(𝑈) . 

Note that the group 𝐼𝑠(𝑈) is Polish (= separable completely metrizable). Another example of a 

universal Polish group is the group𝐻(𝐺) of all homeomorphisms of the Hilbert cube. To prove that 

every topological group𝐺  with a countable base is isomorphic to a subgroup of  𝐻(𝑄), it suffices 

to observe that: 

1. 𝐺  is isomorphic to a subgroup of  𝐻(𝐾) for some metrizable compact space 𝐾. 

2. if 𝐾 is compact and P(K) is the compact space of all probability measures on 𝐾,  there is a 

natural embedding of topological groups  𝐻(𝐾) → 𝐻(𝑃(𝐾)); 

3. If 𝐾is an infinite separable metrizable compact space, then 𝑃(𝐾) is homeomorphic to the 

Hilbert cube. The groups 𝐼𝑠(𝑈)and 𝐻(𝑄) are not isomorphic and the group  𝐻(𝑄)  is not 

extremely amenable, since the natural of  𝐻(𝑄)  on  𝑄 has no fixed point. 
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The group 𝐼𝑠(𝑈) is not Roelcke-precompact, to see that, fix    𝑎 ∈ 𝑈   and consider the function 

𝑔 → 𝑑(𝑎, 𝑔(𝑎))  from 𝐼𝑠(𝑈)  to 𝑅 ,  where 𝑑  is the metric on 𝑈 .  This function 𝐿⋀𝑅  uniformly 

continuous and unbounded, hence the Roelcke uniformity𝐿⋀𝑅  is not precompact. We slightly 

modify the space 𝑈 , in order to obtain a Roelcke –precompact group of isometries. 

Let  𝑈1be the “Urysohn universal metric space in the of spaces of diameter ≤ 1" . This space is 

characterized by the following properties:𝑈1  is a complete separable   𝑤 −homogenous metric 

space of diameter≤ 1is isometric to a sub-space of𝑈1 . Let    𝐺 = 𝐼𝑠(𝑈1)  . This is a universal Polish 

group. This group is Roelcke precompact. Let us describe the Roelcke compactifications   𝑅(𝐺)  

of  𝐺 . 

Consider the compact space  𝐾 ⊂  𝐼𝑈1 of all non-expanding functions  𝑓: 𝑈1 → 𝐼 = [0,1] . Then  𝐾  

is a 𝐺 −space, so there is a natural map from  𝑅(𝐺)  to the set  𝐸𝑥𝑝𝐾2  of  all closed relations on𝐾 

. It turns out this map is homeomorphic embedding. 

There is a more geometric description of 𝑅(𝐺); it is the space of all metric spaces 𝑀 of diameter 

1, which are covered by  two isometric copies  of  𝑈1 . More precisely, consider all triples 𝑆 =

(𝑀, 𝑖, 𝑗), where 𝑀 is a metric spaces 𝑀   of diameter 1 ,  𝑖 ∶ 𝑈1 → 𝑀 and 𝑗 ∶ 𝑈1 → 𝑀 are isometric 

embeddings, and 𝑀 = 𝑖(𝑈1) ∪ 𝑗(𝑈1). Every such triples gives rise to the function  𝑃𝑠 ∶  𝑈1 × 𝑈1 →

𝐼 defined by 𝑃𝑠(𝑥, 𝑦 = 𝑑(𝑖(𝑥), 𝑗(𝑦)) where 𝑑 is the metric on 𝑀. The set 𝜃 of all functions 𝑃 , that 

arise in this way, is a compact subspace of 𝐼𝑈1
2
, and 𝑅(𝐺) can be identified with 𝜃. Elements of  𝐺  

correspond to triples  (𝑀, 𝑖, 𝑗) such that 𝑀 = 𝑖(𝑈1) = 𝑗(𝑈1). 

The space  𝑅(𝐺)  has a natural structure of an ordered semi group. If  𝑅(𝐺) is identified with a 

subset of  𝐸𝑥𝑝𝐾2 , then 𝑅(𝐺) happens to be closed under composition of relations, whence the 

semi group structure, and the order is just the inclusion. If 𝑅(𝐺) is identified with 𝜃 , then the order 

is again natural, and the semi group operation is defined as follows: If  𝑝, 𝑞 ∈ 𝜃 , the product of  𝑝  

and  𝑞  in  𝜃  is the function  𝑟 ∶ 𝑈1
2 → 𝐼  defined by 

𝑟(𝑥, 𝑦) = 𝑖𝑛𝑓({𝑝(𝑥, 𝑧) + 𝑞(𝑧, 𝑦)}) ∪ {𝐼} , 𝑥, 𝑦 ∈ 𝑈1. 

There is a one-to one correspondence between idempotents in 𝑅(𝐺) and closed subsets of  𝑈1  . 

Theorem (3.6.3):  The universal Polish group  𝐼𝑠(𝑈) is minimal. 
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Thus, every topological group with countable base is isomorphic to a subgroup of a minimal 

Roelcke-precompact Polish group. More generally, every topological group is isomorphic to a 

subgroup of a minimal group of the same weight. 

Every topological group  𝐺  is isomorphic to a subgroup of  𝐼𝑠(𝑋) , where𝑋 is a complete 𝑤- 

homogenous metric space of diameter 1, which is injective with respect to finite metric spaces of 

diameter 1, and for every such 𝑋  the group  𝐼𝑠(𝑈) is Roelcke-precompact and minimal. The 

uniqueness of  𝑋  is lost in the one separable case, and it is not known whether there exists a 

universal topological group of a given uncountable weight. 

4 Conclusion  

We saw that the topological groups divide to many parts, like abelian and non-abelian topological 

groups and topological transformation groups, and plays a very important part in pure mathematics. 

There are many parts of topological groups’ compactifications, and they may be useful for studying 

the group  𝐺  itself. 
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